
Evaluation of FIPA-OS 1.03

Mikko Laukkanen

Helsinki, 16th February 2000

Cellular System Development,

Sonera Mobile Operator,

Sonera Ltd,

P.O.Box 970, 00051 SONERA

mikko.laukkanen@sonera.com

Abstract

FIPA-OS is an open-source implementation of the mandatory elements of FIPA 97-compliant

agent platform. The primary aim of FIPA-OS is to provide a framework supplementing the

FIPA speci�cations and therefore make it easier to adopt the FIPA technology. In this paper,

FIPA-OS is evaluated according to following criteria: FIPA-compliance, software quality, inter-

operability and scalability. The objective of this paper is to give feedback to the developers of

FIPA-OS. The results show that interoperability is the area needing improvements. This paper

is based on author's Master's Thesis �Evaluation of FIPA-compliant agent platforms�, which is

available on request.

Keywords: FIPA-OS, agent platform, evaluation, scalability, interoperability



Contents

1 Introduction 2

2 Evaluation criteria 2

2.1 Requirements for a FIPA-compliant agent platform . . . . . . . . . . . . . . . . 2

2.2 Software quality metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.4 Stress tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Results 6

3.1 FIPA-compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2 Software quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.3 Interoperability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Discussion and conclusions 12

References 15

Appendices 16

Appendix 1. The mandatory requirements for a FIPA-compliant agent plat-

form.

Appendix 2. The optional features of a FIPA-compliant agent platform.

Appendix 3. Test environments.

1



1 Introduction

Agent based software and agent systems vary making them di�cult to interoperate. FIPA

(Foundation for Intelligent Physical Agents) is a standardization organization promoting de-

velopment and speci�cation of agent technologies. The main goal for FIPA is to specify, how

di�erent kinds of agent platforms can interoperate. FIPA speci�cations have reached such a

maturity that FIPA-compliant agent platforms have been implemented by various developers.

In this paper, FIPA-compliant agent platform called FIPA-OS from Nortel Networks is evalu-

ated. Evaluation is based on our experiments on using FIPA-OS. The criteria for evaluation

are: FIPA-compliance, software quality, interoperability and scalability. This paper is based on

author's Master's Thesis �Evaluation of FIPA-compliant agent platforms� [3], which is available

on request. Although in the Master Thesis there was version 1.02 of FIPA-OS studied, in this

paper, we take the version 1.03 into account.

Objective of this paper is to give feedback to the developers of FIPA-OS and to gain our

own knowledge on FIPA-compliant agent platforms when deciding, which platform to use in

our own extensions and applications.

This paper is organized as follows. Section 2 presents the criteria used in evaluation and

describes, how tests and measurements are carried out. In section 3 the results are presented

and justi�ed. Section 4 discusses the results and concludes this paper.

2 Evaluation criteria

2.1 Requirements for a FIPA-compliant agent platform

For the evaluation of the FIPA-compliance we developed a requirement speci�cation for a

FIPA-compliant agent platform. The requirement speci�cation is based on the FIPA spec-

i�cations, and basically collects the requirements from informal speci�cations into a formal

UML-compliant [1] requirement speci�cation. The motivations for collecting these require-

ments were:

� Lack of a requirement speci�cation document of a FIPA-compliant agent platform,

2



� The need to de�ne, what the �FIPA-compliance� actually means and what is needed to

achieve the �FIPA-compliance�, and

� Our intention to come up with a UML-speci�cations for the requirements serving as a

reference in the evaluation of the di�erent platforms.

From the requirement speci�cation the most important requirements were used in evaluation.

The most important requirements include interoperability, Agent Management System (AMS),

Agent Communication Channel (ACC) and Directory Facilitator (DF). These requirements are

collected in a table in Appendix 1. In addition to the requirements, a set of optional features

are collected in Appendix 2. The requirements are the ones that every FIPA-compliant agent

platform must ful�ll, whereas the optional features are just for bringing in extra value to

a platform. The evaluation for FIPA-compliance is based on the requirements so that the

requirements are gone through one by one. Requirements and optional features are dealt

separately and from both groups, the percentage of ful�lled requirements is calculated.

2.2 Software quality metrics

In addition to the requirements, more traditional metrics for software quality were also used

in evaluation. Software quality was evaluated, because we wanted to �nd out, how suitable

FIPA-OS is for our further development and extensions, so the main emphasis is put on the

availability of sources, design and implementation issues and possibilities for own further ex-

tensions. Software quality metrics are presented in Table 1.

The �rst column implies the criterion. Explanations for the criteria are collected in Table 2.

All the criteria are evaluated in the range of 0 to 5. The �Factor� column indicates, how much

emphasis is put on the criterion. The �nal column indicates the actual scale of the criterion

after the �grade� of the criterion is weighted with the factor. The scale sc for criterion c is

derived as:

sc = [0; 5 � fc]; (1)

where fc is the weight factor for c.

3



Table 1: Software quality metrics for a FIPA-compliant agent platform.

Criterion Factor f Scale s

User interaction 0.2 0 - 1
Documentation 0 - 4
- Programmer's guide 0.8 0 - 4
- User's guide 0.8 0 - 4
- Installation guide 1.0 0 - 5
- JavaDoc 0.6 0 - 3
Ease of installation 0.6 0 - 3
Availability of binaries 1.0 0 / 5
Availability of sources 0.8 0 / 4
Technical merits 0 - 4.6
- Architecture 1.0 0 - 5
- Design 1.0 0 - 5
- Implementation 0.8 0 - 4
Ease of implementing agents 0.8 0 - 4
Further development 1.0 0 - 5

So if the ease of implementing agents is evaluated and grade of 3 is assigned to it, the ac-

tual grade after weighting is 0:8 � 3 = 3:2, while the maximum would be 0:8 � 5 = 4.

The documentation and technical merits are divided into sub-criteria. In these cases the total

range stotal is calculated as the mean value of the weighted sub-criteria ssub as:

stotal =

P
n

1
ssub

n
; (2)

where ssub is the scale for sub-criterion and

n is the number of sub-criteria.

The idea of weighting the criteria is from author. The evaluation is based on author's ex-

periences in using FIPA-OS and implementing agents with it.

2.3 Interoperability

Interoperability is achieved by using IIOP as the baseline protocol and Agent Communication

Language (ACL) as the communication language. In the evaluation of interoperability, the

implementation of IIOP was inspected. To support our inspections, we ran some cross-platform

tests against JADE, which is a FIPA-compliant agent platform from CSELT.

4



Table 2: Explanations for the criteria in software quality.

Criterion Explanation

User interaction What kind interfaces FIPA-OS provides for
both developer and user, e.g. GUIs, de-
bug/log information and ease of con�gura-
tion.

Documentation Availability of documents and guides.
Ease of installation How much e�ort is needed to get FIPA-OS

installed and running.
Availability of binaries Self explanatory.
Availability of sources Self explanatory.
Technical merits Design and implementation issues, reusabil-

ity of the code, organisation of the sources
and binaries.

Ease of implementing agents How much e�orts are needed to implement a
custom agent in FIPA-OS.

Further development How easy it is to make own extensions to the
platform, how much does a developer need
to make changes to the original code.

2.4 Stress tests

Stress tests were performed for three reasons:

� To evaluate the scalability of FIPA-OS.

� To compare the performance of IPMT to other transports.

� To give an overall view to performance of di�erent transport mechanisms.

The evaluation of scalability is the main objective of the stress tests. A test agent, which sends

a message to another agent and gets back the response, was implemented. The time between

message sending and arrival of response was measured. To see how FIPA-OS can handle big

amounts of simultaneous requests, 1, 50, 100, 150 and 200 test agents were used in sending

simultaneous messages. These tests were repeated �ve times and mean values and standard

deviations of the data points were calculated.

The stress tests were performed on Linux systems. The properties of the testing environ-

ment are collected in Appendix 3.

5



Stress tests also helped to see, how IPMT performed compared to IIOP. Because IPMT can

and is usually implemented as direct method calls, IPMT is supposed to perform a lot faster

than IIOP messaging. It must be noted though that this applies only to a situation, where a

platform resides in one host machine. If the platform is distributed across multiple host ma-

chines, direct method calls cannot be used. By testing and comparing the performances of both

IPMT and IIOP it can be seen, if the gap in performance is so big that the implementation

of speci�c IPMT is worthwhile. After all, ORBs should be able to detect if the method call

is local or not. If the receiver of the call is local object, the call will not be forwarded to the

network protocol stack and therefore the method will be executed as local method call.

Instead of putting the emphasis on response times and possibly comparing the performances to

other platforms, we think that it is more important to see, how FIPA-OS and its message trans-

ports react to a congested situation. Therefore, when inspecting the results, a special attention

should be paid to the overall scalability. It should be also noted that the tests measure response

times from one agent's point of view, when it is sending one request to a platform under heavy

load. The test measuring response times, when one agent sends a multicast message, is left for

further study. Also, our tests were conducted using zero-size payload1 in the ACL-messages.

Thus, tests with variable sized payload are left for further study.

3 Results

3.1 FIPA-compliance

The result on FIPA-compliance are presented in Table 3. Requirement R14 was not ful�lled,

because in FIPA-OS, an agent is able to send a message to another agent without resistering

to AMS. R18 was the only one, which was a little questionable. While FIPA-OS 1.03 provides

the use of multiple transports, we were not able to verify, if ACC is really able to choose the

correct transport according to the address format of the receiver-�eld in the ACL-message. R2

causes also troubles in FIPA-OS, because the IDL is not exactly as it is speci�ed in FIPA 97.

This issue is discussed later in section 3.3.

In optional features, F1, F5, F8, F10, F12 and F15 were not supported. F1 states that other

protocols may be supported, and FIPA-OS does this, but the initial contact must be made

using the baseline protocol. In FIPA-OS, user is able to use other than the baseline protocols

1In ACL this means that the :content-�eld is empty.

6



explicitly. F5 and F8 are not supported, because FIPA-OS does not support mobile agents. F10

and F12 are not supported by FIPA-OS itself, although an explicit registration can be made

by the user. F15 states that DF may have some criteria for restricting services. In FIPA-OS,

this is not supported.

One remark should be made about the functionalities of AMS and DF. In FIPA-OS 1.03,

the GUI for DF is separated from the DF itself, which makes the DF-GUI an agent of its own.

This is �ne. However, AMS has no GUI for controlling agent lifecycles. It would be nice to

have this kind of GUI for AMS also.

Table 3: Requirements and optional features.

Requirements ful�lled % Optional features ful�lled %

27/28 96% 9/15 60%

3.2 Software quality

The results on software quality are presented in Table 4. In the table, the weighted results are

summed and the total is presented at the bottom line with the percentage of the maximum.

GUIs have improved in version 1.03. FIPA-OS provides a test agent, which can be used in test-

ing messaging using a GUI for inputting and sending an ACL-message. This GUI can also be

used by any other agent. AMS and ACC do not provide any GUIs, but DF does by showing the

contents of its directory. For the developer FIPA-OS provides an easy way of producing debug

and log information by exploiting the Metamata diagnostics-package. However, in FIPA-OS

1.03, Metamata-package is not needed anymore, because it is replaced by a similar package

provided by FIPA-OS itself.

Documentation in FIPA-OS needs improvements. Only a document containing distribution

notes is delivered with FIPA-OS. While it contains su�cient instructions for installation, a

programmer's guide and some example agents should be de�nitely included. Currently FIPA-

OS includes only one example agent, which can be used to test message sending/receiving and

which we used as a reference in the implementation of our own test agent.

If the need for downloading and installation of third-party tools is not taken into account,

FIPA-OS is easy to install; there are scripts for both Windows NT and Unix systems provided

7



Table 4: Results on software quality.

Criterion FIPA-OS

User Interaction 0.8
Documentation 1.6
- Programmer's Guide 0
- User's Guide 2.4
- Installation Guide 4
- JavaDoc 0
Ease of installation 0.6
Availability of binaries 5
Availability of sources 4
Technical merits 3.8
- Architecture 5
- Design 4
- Implementation 2.4
Ease of implementing agents 3.2
Further development 5

Total 24
Total % 78%

for compiling and running the platform.

What it comes to technical merits, FIPA-OS is organised logically. Every component is col-

lected into a package. FIPA-OS provides its own variation of Make�le and scripts to execute

it. We think though that it would be better o� to use standard Make�les, which would make

FIPA-OS easier to port on di�erent operating systems and would allow a selective compilation

of individual source �les in any directory.

Unlike other platforms, FIPA-OS supports platform and agent pro�les, which are encoded

in XML/RDF [6]. In addition to agent pro�les, XML can be used as a content language in

ACL-messages (this feature was not tested though). The use of XML is justi�ed for many

reasons. Firstly, XML is a standard for expressing and exchanging information on the Web

[2]. Secondly, syntax validation of the content is possible, when a DTD has been de�ned. In

ACL, the DTD is de�ned in :ontology-�eld. Thirdly, XML documents are easy to convert

into a human-readable form (e.g. Web page) so that their content can be stored in this form

for instance into log �les, where end-users can easily check the contents. Fourthly, there exist

many tools for parsing, editing and translating XML documents. In our experiment, where we

generated a number of test agents, we would have need for a default pro�le. In FIPA-OS, the

8



pro�le name is constructed by the agent's name, and because the names for test agents were

generated randomly, the functionality for a default pro�le had to be implemented on our own.

FIPA-OS is an open-source platform. Especially for this reason, we think that the code should

follow a coding style, which would make the code much more readable and understandable.

This is important especially if the development of FIPA-OS is going to be carried out by other

people than the ones working for Nortel Networks. All the people making contributions would

be enforced to follow the FIPA-OS speci�c coding style. We think that this would make the

maintainability of the source code much easier.

Implementing an agent in FIPA-OS is fairly easy. However, because of the absence of class

and functional descriptions, a user has to use existing agents as reference. Also, there are some

things that should be transparent to the user, such as registration with AMS. It should not be

a user's responsibility to manually construct an ACL-string for the AMS-registration message.

These kinds of things should be implemented in superclasses and a method to do the actual

job should be provided for the user.

FIPA-OS is easy to extend. With well-organised and component-oriented structure, a user

wanting to make an extension to the platform usually needs only to implement a new class or

a package for the extension. There is no need to change the existing code. However, openess

of the source code makes it possible to make modi�cations to the original code, if needed.

3.3 Interoperability

FIPA-OS provides two possible implementations for IIOP: Voyager 3.11 and JDK1.2 ORB. In

previous versions of FIPA-OS, OrbixWeb from Iona was supported, but now that FIPA-OS

uses JDK1.2, the OrbixWeb ORB is replaced by the JDK's own ORB. In addition to IIOP-

transports, Java RMI is supported.

FIPA-OS also presents a solution for bootstrapping problem. Bootstrapping problem occurs,

when a platform is started up and it does not know the addresses of other platforms. In FIPA-

OS, the URL- and IOR-addresses are published in a Web-server, from where they are also

queried. While the idea is excellent, the implementation is a bit weak; when taking a deeper

look at the implementation of the lookup and resolving functions, we found out that the IOR

was not retrieved from the Web-server. Instead, the ORB's own methods for constructing IOR

was used and the CORBA naming service was used in object reference lookups. We see no

9



reason for using CORBA naming service, because the IORs are retrieved from the Web servers.

Using naming service may result in interoperability problems among di�erent ORBs.

The implementation of IIOP and the FIPA_Agent_97-IDL contained an error, which made

interoperability fail with JADE. The reason for this is that in FIPA-OS 1.03 the IDL-interface

is wrapped inside a CORBA-module, which is not in line with FIPA 97 speci�cations. In earlier

versions of FIPA-OS, the IDL was implemented as it is speci�ed by FIPA. Why has this been

changed?

However, in general, the main problem in interoperability is that the use of URL- and IOR-

addresses varies among FIPA-compliant agent platforms. While some platforms support only

IOR-addresses, the others rely on using URL-addresses. FIPA-OS supports URL-addresses but

provides a way of publish IORs in a Web-server. We think that this is the right way to do it.

IORs should be used in addressing and URL-format can be used in looking up the IOR.

In our opinion, the use of IIOP as the baseline protocol is a right decision, because IIOP

and CORBA have proved to be successful in object distribution. Also, OMG [5] is constantly

making e�orts in developing CORBA standard. However, we think that the speci�cation for

interoperability needs some improvements by FIPA. Especially the mapping between URL-

addresses and IOR-addresses should be speci�ed more precisely or examples of doing it should

be provided. In the current speci�cation an address is composed of host name (or IP-address),

port number and object key. First problem in this kind of addressing is the object key. Unfor-

tunately, most of the CORBA ORB implementations available do not allow users to choose the

object key. Instead, ORBs create some arbitrarily value, which may even be binary characters.

Second problem is the port number, which may not be prede�ned. On the contrary, ORBs tend

to choose an available port number from some prede�ned range.

3.4 Scalability

In this section, the results on stress tests are presented. The results are collected in Table 5. In

the table there are mean values (�x) and standard deviations (�) presented. The �rst column

indicates the number of simultaneous messages sent. The remaining columns indicate the means

and standard deviations of di�erent transports. All the measurements are milliseconds. The

results are plotted in Figure 1 for easier interpretation.

FIPA-OS does not implement any speci�c IPMT. Instead, all the communication is gone

10



Table 5: The results for scalability.

IPMT IIOP

Msg # �x � �x �

1 221 � 3 239 � 7
50 1363 � 309 1602 � 336
100 2236 � 1203 4317 � 1023
150 4496 � 1766 5689 � 2254
200 6214 � 2208 6335 � 2120

0

1000

2000

3000

4000

5000

6000

7000

1 50 100 150 200

Number of messages

R
es

p
o

n
se

 t
im

e 
(m

s)

IPMT

IIOP

Figure 1: FIPA-OS results.

through CORBA-ORB. Therefore, FIPA-OS counts on the ORB's performance in intra-communi-

cation. According to our experiments, this worked out well with scalability. In fact, current

ORB's should be able to detect, if the receiving end for the message resides in the same host,

and if it does, the ORB does not forward the message to the network protocol stacks. Instead,

the message is delivered using a local method call. However, results show that there is not a

big gap in response times between IPMT and IIOP. In JADE, where IPMT is implemented

using local method calls, the di�erence in performance is dramatic.The approach FIPA-OS has

chosen is safe in a way that the distribution of the platform across multiple host machines

does not introduce any probles. On the other hand, if an application places high demands for

performance in agent communication, FIPA-OS should provide a faster (and optional) way of

carrying out IPMT. We think that it is rare to have a platform distributed across multiple

11



machines. Therefore we propose that local method calls would be used in IPMT, at least as an

optional feature.

As we ran our tests under Linux system, we faced some errors either in FIPA-OS or Java

Virtual machine implementation. First we used JDK1.2.1, which frequently seized communica-

tion with more than 50 messages. As we updated to JDK1.2.2, this error did not occur anymore,

but with 100 or more messages, Java Virtual Machine crashed occasionally. We are not sure

about the reason for this, but we believe it has something to do with the thread allocation and

scheduling of the Linux-port of Java Virtual Machine.

The results show that the standard deviations are big especially with big loads making it

hard to know, how much con�dence we can place in the results. Because of this, we established

con�dence levels of 0.01 and therefore could see, what the response time would be in 99 out

of 100 requests. Although in the literature it is said that a con�dence level of 0.05 is usually

su�cient [4], we dicided to use a con�dence level of 0.01. The response times are shown in

Table 6 in milliseconds.

Table 6: Response times with con�dence of 0.01.

Msg # IPMT IIOP

1 228 256
50 1464 1712
100 2513 4553
150 4828 6113
200 6574 6681

4 Discussion and conclusions

FIPA-OS full�lled our requirements for a FIPA-compliant agent platform well. 60% of the

optional features are supported, but while FIPA-OS evolves, these features are likely to be

supported in future releases. Also, because of the openess, the errors in the code can be found

quickly.

FIPA-OS exploits many third-party tools, such as XML-parsers, ObjectSpace Voyager and

Apache Web-server. The idea of using third-party tools is good, but these tools should be in-

cluded in FIPA-OS, or at least there should be a distribution package available, where all these

tools are included and their versions freezed. Many companies tend to have only the latest

12



versions of their products available, and if FIPA-OS uses some older versions of that product,

the end-user is in trouble with �nding the correct versions. Furthermore, the installation of

these tools should be integrated into the installation of FIPA-OS.

While the the quality of the software is good, although a coding style would be needed, the

documentation needs improvements. In our opinion, being an open-source distribution does

not justi�cate the absence of decent documentation. A class diagram of the whole architecture,

textual descriptions of the classes and their methods as well as examples of using them should

be included.

Interoperability did not work out because of the incorrect FIPA_Agent_97-interface. In

the earlier versions of FIPA-OS, where the IDL was correct, interoperability with JADE was

achieved. The idea of using a Web-server in publishing IORs is good and is in line with our

opinion of the correct implementation of inter-platform messaging. FIPA-OS and its transports

are also well scalable.

FIPA-OS is still under development, but has already proved to be a suitable platform espe-

cially for extensions and �user-customized� agent platform. As distributed under open-source

license makes this possible. As for being a �black-box� middleware for agent and agent system

application development, FIPA-OS has to improve in documentation and in correcting some

errors it contains.

As a conclusion, the pros and cons of FIPA-OS are presented below:

Pros:

+ Free and open source.

+ Ful�lls the requirements for a FIPA-compliant agent platform well.

+ Well-organised and logical structure of the distribution.

+ Fast, easily extendable and scalable transports.

+ Agent pro�les and content language as XML/RDF.

+ Distribution of IORs using Web-server.

+ JavaDoc-documentation.

+ Use of third party tools.

+ GUIs for user interaction.

13



Cons:

- The need of downloading and installing third-party tools.

- Installation is complex because of the third-party tools.

- Lack of standard Make�les.

- Lack of example agents and coding style.

- Lack of programmer's guide, class diagrams and functional descriptions.

- Interoperability problem due to FIPA_Agent_97-IDL interface.

14



References

[1] Booch Grady, Rumbaugh James, and Jacobson Ivar. The Uni�ed Modeling Lan-

guage User Guide. Addison-Wesley, 1999.

[2] FIPA. FIPA 98 Speci�cation, Spec 13, Version 1.0, FIPA97 Developers Guide, 1998.

[3] Laukkanen Mikko. Master's Thesis: Evaluation of FIPA-compliant agent platforms,

1999.

[4] Newman William M., and Lamming Michael G. Interactive System Design. Addison-

Wesley, 1996.

[5] OMG. OMG homepage. In http://www.omg.org/ (1999).

[6] W3C. Extensible Markup Language (XML) 1.0 - W3C Recommendation. In

http://www.w3.org/TR/1998/REC-xml-19980210 (Feb 1998).

15



APPENDICES

Appendix 1. The mandatory requirements for a FIPA-compliant agent

platform.

No Requirement Source

Interoperability

R1 IIOP must be used as the baseline protocol. 97
R2 Baseline protocol must de�ne an IDL-interface called

FIPA_Agent_97 containing one method called "message",
which takes as an input parameter a CORBA string.

97

R3 ACL must be used in inter-platform communication. 97
R4 Address in the form of URL must be supported. 97

FIPA agent

R5 FIPA agent must be able to communicate with other FIPA agents. 97
R6 FIPA agent must have an unique identity. 97
R7 FIPA agent has one to many addresses. 97
R8 FIPA agent must have a home platform, which is static. 97
R9 FIPA agent's name is associated with the agent when the agent is

created or when it registers with AMS for the �rst time.
97

R10 FIPA agent's address must not be used as agent's name. 98
R11 FIPA agent must have one or more owners. 97

ACL and messages

R12 FIPA agent must be able to send a "not-understood"-message, if
the incoming message is either syntactically or semantically mal-
formed or is not supported by the agent.

97

AMS

R13 AMS controls and administrates the lifecycles of the FIPA agents
registered with it.

97

R14 FIPA agent must be registered with AMS in order to interact with
agents in the same platform or agents residing in other platforms.

97

R15 AMS maintains indexes to the agents registered with it (acts as
"white pages" of the platform).

97

R16 Only one AMS administrates a platform. 97



Appendix 1. Cont'd.

No Requirement Source

ACC

R17 ACC must support IIOP. 97
R18 ACC must be able to choose the correct transport protocol ac-

cording to the address format.
97

R19 ACC must take care of checking the syntax of incoming message
before forwarding it onwards.

97

R20 Agents need not to be aware of the details of the message trans-
ports.

97

R21 ACC must support singlecast message transport. 97
R22 All messages are sent via either local or remote ACC. 98
R23 ACC must support both intra- and inter-platform communication. 97
R24 Only messages addressed to agent(s) are sent via ACC. 97
R25 ACC needs not to be an agent. Instead, ACC just provides mes-

sage transport services.
98

R26 In message routing, ACC does not access the content of the mes-
sages.

97

DF

R27 Every platform must include at least one DF. 97
R28 If DF is accessed remotely (i.e. from another platform), then the

DF must provide an ACL interface.
97



Appendix 2. The optional features of a FIPA-compliant agent plat-

form.

No Feature Source

Interoperability

F1 Other protocols than IIOP may be supported, although the initial
contact must be done using IIOP.

97

F2 An agent may support IIOP by itself. 97
F3 Address in the form of IOR may be supported. 98

FIPA agent

F4 FIPA agent may be registered with a platform (i.e. be resident)
or it can be non-resident.

98

F5 FIPA agent may have a foreign platform, which changes while the
agent moves.

98

ACL and messages

F6 SL may be supported as content language. 97
F7 XML may be supported as content language. 97

Mobility

F8 FIPA agent may move from a location to another. 98

AMS

F9 A platform may extend across multiple machines. 97
F10 AMS may advertise itself with DF. 98

ACC

F11 ACC may support other than IIOP. 97
F12 ACC may advertise its transports with DF. 98

DF

F13 DF may be distributable. 97
F14 DF may register itself with other DFs. 97
F15 Services o�ered by DF may be restricted by some criteria. 97



Appendix 3. Test environments

REQUESTING PLATFORM

===================

LINUX SYSTEM INFORMATION

------------------------

Linux version 2.2.12-20 (root@porky.devel.redhat.com)

(gcc version egcs-2.91.66 19990314/Linux

(egcs-1.1.2 release)) #1 Mon Sep 27 10:40:35 EDT 1999

RedHat 6.1

GNOME-window manager

CPU INFORMATION

---------------

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 7

model name : Pentium III (Katmai)

stepping : 3

cpu MHz : 497.841506

cache size : 512 KB

fdiv_bug : no

hlt_bug : no

sep_bug : no

f00f_bug : no

coma_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 2

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 sep mtrr pge

mca cmov pat pse36 mmx osfxsr kni

bogomips : 496.44

MEMORY INFORMATION

------------------

total: used: free: shared: buffers: cached:

Mem: 263909376 244039680 19869696 183885824 5955584 160497664

Swap: 549601280 27820032 521781248

MemTotal: 257724 kB

MemFree: 19404 kB

MemShared: 179576 kB

Buffers: 5816 kB

Cached: 156736 kB

SwapTotal: 536720 kB

SwapFree: 509552 kB

NETWORK

-------

10Mb/s LAN (closed)



Appendix 3. cont'd...

SERVER PLATFORM

===============

LINUX SYSTEM INFORMATION

------------------------

Linux version 2.2.5-15smp (root@porky.devel.redhat.com)

(gcc version egcs-2.91.66 19990314/Linux

(egcs-1.1.2 release))

#1 SMP Mon Apr 19 22:43:28 EDT 1999

RedHat 6.1

KDE-window manager

CPU INFORMATION

---------------

processor : 0

vendor_id : GenuineIntel

cpu family : 6

model : 5

model name : Pentium II (Deschutes)

stepping : 2

cpu MHz : 398.779465

cache size : 512 KB

fdiv_bug : no

hlt_bug : no

sep_bug : no

f00f_bug : no

fpu : yes

fpu_exception : yes

cpuid level : 2

wp : yes

flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr

pge mca cmov pat pse36 mmx osfxsr

bogomips : 398.13

MEMORY INFORMATION

------------------

total: used: free: shared: buffers: cached:

Mem: 529707008 42729472 486977536 32075776 4788224 25747456

Swap: 707330048 0 707330048

MemTotal: 517292 kB

MemFree: 475564 kB

MemShared: 31324 kB

Buffers: 4676 kB

Cached: 25144 kB

SwapTotal: 690752 kB

SwapFree: 690752 kB

NETWORK

-------

10Mb/s LAN (closed)


