FIPA-OS Developers Guide

Open Source Copyright Notice and License: FIPA-OS

1. The programs and other works made available to you in these files (“the Programs") are Copyright (c) 1999 - 2000 Nortel
Networks Corporation, 8200 Dixie Road, Suite 100, Brampton, Ontario, Canada L6R 5P6. All rights reserved.

2. Your rights to copy, distribute and modify the Programs are as set out in the Nortel Networks FIPA-OS Public License, a
copy of which can be found in file "Nortel_FIPA_OS Public_Licencetxt" and the latest version can also be found at
http://fipa-os.sourceforge.net/. By downloading the files containing the Programs you accept the terms and conditions of the
Public License. You do not have to accept these terms and conditions, but unless you do so you have no rights to use the
Programs.

The Criginal Codeis Nortel Networks FIPA-OS (Foundation for Intelligent Physical Agents - Open Source).

The Initial Developer of the Original Code is Nortel Networks Corporation. Portions created by Nortel Networks Corporation or
its subsidiaries are Copyright (c) 1999 - 2000 Nortel Networks Corporation. All Rights Reserved.

Contributor(s):
Emorphia agree to provide Modifications to Nortel Networks FIPA-OS Covered Code under Nortel Networks FIPA-OS
Public License. All Emorphia's Modifications remain Copyright (c) 2001 Emorphia Limited. All Rights Reserved.

FIPA-OS Developers Guide

Publication History

18 October 2000
First release.

2 February 2001
Updated to include details of the XM L-specific databinding code

FIPA-OS Developers Guide

Table of Contents

ADOUL thISAOCUMENT ...t s %
What ISThiS HOCUMEBNE? ...t bbbttt e bbbt et e e et se e be b sbennas v
INEENAEA AUdIENCE ...ttt b bbbt b ettt be bt ne b v
Sz o 1 070 10 o L= S v
CONVENMLIONS USEX.......cueienieieitesieie sttt sttt sttt st sttt s b e s be st se bt s bese e bt s b se e st s b e se e st s beneesesbeseebesbe e esesbe e enenbne v
JLIC=: 0.1 70 [| 2SSOSR v
FIPA-OS OVENVIBW ..ottt sttt st bbb enes 6
[Ko [= Y= AN ot g = (1= 6
COr e COMPONENTS. ...ttt se e be e s e e e are e sse e saseenaeeaneeebeesneeaseesnnean 7
NON-COMPONENE COrE ClBSSES.ceviterteetieieeeeeeseesteste st sie e e ee st esbeseesbessesaeeseese e beseesbesaesaeaneeneanbeseesbesaeans 7
L 0= oIS o) 8 1T o= 1 2 OSSP 7
fipaos.ont.fipafipaman.ENVEIOPEo e e 7
FIPBOSIMESIMESSATE. ... vttt ettt et e e bt s bt eae e b e et e s b e seeebesbesbeebeeneeneeseebeseesnennis 8
fIPAOS.ULTL.LDIAGNOSTICS.......cocieiieeiirierieises ettt e e be e be e e sesbe e e seste e e e nsenrens 8
AgENt ShEll (FIPAOSAGENL) ..c.veceeeeeeiereer e steste s se et s eee e see e sreste s e esesseeseenseseesaeseesressesseeseennenseseessenses 8
COMPOSItION Of @M AGENL ..o et s e se e e e e et e s tesbesaeareeseeseeneensenteseensesnennnns 8
Functionality Provided by the Agent Shell ... e 10
LI LIS 3= = 1= P 11
(@0 T010T0 1S R 1Ko 1) 11 = Y P 12
QLIS G Y (TSSO 13
TasK MANAGEN LISIENEY ...ttt ettt se e b e b aeehe et e e e b seesbesbesne e e eneas 14
S] o I B = S OSSP PP 15
Parent-Task and Child-Task COMMUNICALIONceiuiiiriiiieeieeeeie e e 16
IS Q=5 o T o RPN 17
Other Useful Task APl MethodS & FieldS.........cooiiiiiiiieee e 18
CM (CONVErSation MENAGEL) ..c.eeuereeeeie ettt st ettt et sbe it st s e e e e beseesbe s bt eaesse e e eneeseenbeseesaesaeeneenes 19
CompPOSItiON Of tNE CM ..ot e e et ae s re s e eseenee e e tesaestesneeneeneens 20
ProtoCOl DEFINITIONciveiitiieeeie ettt et ettt st et ne b b e s e 21
Y= o o 22
MTS (MeSSAgE TraNSPOM SENVICE) ..vviveivereeeeeeeeetestesesteseesteseeseseeseeseessessessessessessesseessessessessessessesseeneen 23
CompPOSItioN Of tNEMTS ...t e e sre e e aeese e e e e e tesaestesreeneeneens 23
SEIVICES... ettt sttt ettt ettt e et b e e bt s he e he et e e e beeE e e b e ARt SR e e ReeRE e R AeeE e EeeEeeReeheeReeht e s e beraeebesneeneenean 25
e e S S S AV Lo SRR 25
POSE-PAISEr SEIVICES. ... eiueeterteste ettt ettt ettt et e st e b e et e b e s aeeaeeae e se e beseeebesbeeaeeae e e anbeseesbeaneeneenes 25
e 8 = S Yo U 25
PrE-BUIIT SEIVICES ...ttt st b e bt b et e e e se e be s et e b e s bt eaeeneene et e seesbesneeneenes 26
MTP' s (Message Transport ProtOCOIS)cccoueiirereierieieesie et 27
IMTPBESE ClaSS...... ettt sttt sttt sttt et b e bt be s e et s b et b e e e bt s bene et besbe e nenee 28
Tg1C= 0= Y SRS 29
= = Y I TSSO 30
Bundled MTP IMPIEMENLALiONS.ccviirereeeeeeese e et ee e eee s e sresresse e eseeseenseseensesnesnesnsenees 32
Y SO 32
FTOP et et b e bbb b bbb R e bR e bR e R R e e bRt R e b et R b e Rt s be e neee 32
DAtBDBSE FACIOMYeteiee ittt et b et bttt e e se e beseeeb e s be e st eae e e enbeseeebe s bt saeeneeneas 32
INODBLBIDESE.ttt ettt et b et e st e s e et e s aeeb e e st e a e e e e seeebeeReebe e Rt ene et e seenbeseeebenneennenes 33
LS a0 le Y B = 7= S TSRS 33
SErTali SAIONDBLADASE.ceeee ettt ettt e e e st be bt s b e ae e aeeae e e e e e e e ebesaeeneenean 33
FFULUIE WWOTK ...ttt bttt bt s ae b et e ae et e b e e e e b e sb e e bt she et enbeseeabesaesneeneenean 33
IMPIOVEA PrOIIES ...t bbbt s b e be e b sae e nes 33
PLANNEr SCREAUIES ..ot et et sttt s b ettt st be st e 33
Agent CompPONENt MONITOMNNGcouvieiirere e eteereeeesese e e e se e e se e e sresresresresseeseeseeseensessesaesseenees 33

FIPA-OS Developers Guide

Optional COMPONENTS......cceiiiiierieeieeee ettt e e s aeesre et e sneesreenee s 34
PArSEL FFACTOMY ...ttt sttt h et e e b e e st ea e e e beeeb e e ke e b e e abesaeesan e saeeeaeebeereannean 34
(Oa0 110 O o= o RS 34
=TS B 010 o = ot OSSPSR 34
B =SS AN 0 1= 0 T | P 36
1Y =1 oo SO 38
FINET CLBSS ..ttt et et st b e et b et bRt bR bbb e ne bt e 39
FIPA CCL (Choice ConStraint LanQUBOE)cceeeereerrerierreriereeeeeeseessessessesssssessesssessessessessessessessesseenees 39
(0010 LN 10 Tex 110 (= o [PPSR 39
FFULUIE WWOTK ...ttt b e b s h e e b e e he e e e b e s b e e b e e b e e heshe et e beseeebesaesaeennenean 40
PArSES FACTONY ... ettt ettt e et e sae e sae e b e e st e eaeeeaeesb e et e e nbesnresanesanesas 40
=] o] [ToTe [gr=To] o Y2 41

FIPA-OS Developers Guide

About this document

What is this document?

This document attempts to explain the architecture of the FIPA-OS platform to enable FIPA-OS
developers to update and expand the functionality of FIPA-OS by providing an understanding of its
design. This document is based upon the FIPA-OS v1.3.2 distribution, available via our website [9].

Intended Audience
This document is intended for anyone attempting to incorporate new functionality or modify existing
functionality into the FIPA-OS platform.

Reading Guide

It is strongly recommended that the reader should look at the FIPA-OS web site at http://fipa-
os.sourceforge.net/ to understand the rational e behind this platform and for information on future
updates.

Developers using FIPA-OS are encouraged to provide extensions, bug fixes and feedback to help
improve the planned future releases. All such input should be contributed to the Open Source project
viathe SourceForge site at _http://sourceforge.net/projects/fipa-og/. Y ou are required to register asa
developer to access some of the services at the SourceForge site. General issues and thoughts can be
discussed viathe FIPA-OS mailing list on fipa-os-devel opers@lists.sourceforge.net although you must
register at http://lists.sourceforge.net/mailman/listinfo/fipa-os-devel opers on this list before you can
send and receive messages. An archive of the messages sent to thislist can also be viewed from
http://www.geocrawler.com/redir-sf.php3?list=fipa-os-devel opers. Should you experience difficulties
using thislist, then please contact the FIPA-OS co-ordinators at fipaos@emorphia.com. Please consult
the FIPA_OS Public_Licence.txt file for further details on the requirements for using, extending and
evolving FIPA-OS.

Conventions used

Within the text filenames appear in italics. In examples where users should enter data, the suggested
data appears in bold. For examples of entering data at the command prompt, variables are encapsul ated
in < and > and optional data is encapsulated in [and], eg. [<comms-transport>] is an optional
parameter which can be specified at the command prompt.

Terminology

ACL Agent Communication Language [3]
AID Agent Identifier [1]

API Application Programming Interface
CCL Choice Constraint Language [7]
FIPA Foundation for Intelligent Physical Agents[11]
HAP Home Agent Platform [1]

MTP Message Transport Protocol [4]
MTS Message Transport Service [4]

RDF Resource Definition Framework [13]
SL Semantic Language [2]

XML extensible Markup Language [12]

FIPA-OS Developers Guide

http://fipa-os.sourceforge.net/
http://fipa-os.sourceforge.net/
http://sourceforge.net/project/?group_id=3819
mailto:fipa-os-developers@lists.sourceforge.net
http://lists.sourceforge.net/mailman/listinfo/fipa-os-developers
http://www.geocrawler.com/redir-sf.php3?list=fipa-os-developers
mailto:fipaos@emorphia.com

Chapter 1
FIPA-OS Overview

High-level Architecture

FIPA-OS is a component-orientated toolkit for constructing FIPA compliant Agents using mandatory
components (i.e. components required by ALL FIPA-OS Agents to execute), components with
switchable implementations, and optional components (i.e. components that a FIPA-OS Agent can
optionally use). Figure 1 highlights the available components and there relationship with each other
(NOTE: The Planner Scheduler is not currently available).

Agent Implementation KEY
- Mandatory
JESS Agent Shell i Component
Q) Switchable
_§ 'g) |:| Implementation
[l 0 ol .
ksl I S Optional
19 = g |:| Component
o~ -
s 3 £
S 5t = g
] o %]
@ i = c
[3} S S
P 8 & 5}
3 @ ~ P
c Q (0] o
S I o o
o | Message Transport Protocols 8 & 5

Figure 1 - Componentswithin FIPA-OS

The Database Factory, Parser Factory and CCL components are optional and do not have an explicit
relationship with the other components within the tool-kit. The Planner Scheduler generally has the
ability to interact with all components of an Agent, although not necessarily vice versa

The switchable implementations included as part of the FIPA-OS distribution for each component
include:

* MTPs

0 RMI (proprietary)
o |IOP (FIPA compliant [5])

e Database's

0 MemoryDatabase
0 SeriaizationDatabase

e Parser's
o SL
o ACL
o XML
o RDF

Chapter 2 details the mandatory components of the FIPA-OS platform.

Chapter 3 details the optional components of the FIPA-OS platform.

FIPA-OS Developers Guide

Chapter 2
Core Components

Non-Component Core Classes
This section aimsto briefly look at the classes that any non-trivial Agent implementation will make use
of, but are not necessarily part of any particular component.

fipaos.ont.fipa.ACL

This class represents the abstract notion of an ACL message within the FIPA ACL specifications[3].
By default it supports parsing and deparsing of the FIPA standard string encoding for ACL [€],
although thisisfor historical reasons (ideally the parsing/deparsing of stringified representations of
objects should be independent of the objects containing that information — this provides scope for
multiple content language representations to be considered for a particular class).

In versions of FIPA-OS prior to v1.3.0, the ACLMessage class was used for the same purpose — the
ACL class was introduced due to the changes between FIPA97/98 specifications and FIPA2000, and
the introduction of better typing (i.e. ACLMessage uses String’ s to represent GUID’ JAID’s, whereas
the ACL class requires concrete Agent | D objects). In order to ensure a degree of backward
compatibility, the ACLMessage classis still currently bundled with FIPA-OS, although it simply
wraps the ACL class (see Figure 2).

ACL
(from fipa)

WACL()
WACL()
WACL ()
®Wa ddReceiverAlD()
®a ddReplyToAID()
W yteL engthDecode ()
) yteLengthEncode() ACLMessage
g etContentObject() from acl)
g etConversationlD()
g etinR eplyTo() WACLMessage()
g et_anguage() WACLMessage()
g etOntology() Wcopy()
g etPerfom ative() WgetContent()
g etProtocol () WgetEnvelope()
g etReceiverADs() WgetMessageType()
EetReplyByUTC() :getRe ceiver()

etReplyToAIDs () getRe plyBy()
g eReplyWith() J WgetReplyTo()
g etSenderAlD () WgetSender()
s etContentObject() |setContent()
s etConversationID() WsetContent()
s etinR eplyTo() |setEnvelope()
s et_anguage() WsetMessageType()
s etOntology() s etRe ceiver()
s etPerform ative() s etRe plyBy()
s etProtocol () WsetReplyTo()
s eReceiverAlD () WsetSender()
s etReceiverAD s()
®s etReplyByUTC()
®s etReplyToAIDs ()
s etReplyWith()
®s etSenderAD ()
®s ring LiteralDecode()
®s rring LiteralEncode()
o String()

Figure2- ACL & ACLMessage Objects

fipaos.ont.fipa.fipaman.Envelope
This class provides an abstract representation of the FIPA defined Envelope fromthe MTS
specification [4]. An Envel ope object by default provides access to the last assigned values of each

FIPA-OS Developers Guide

of its parameters. Changes made to the Envel ope by each ACC can be inspected by using the
get SubEnvel opes() method it provides, which returnsalLi st of Envel ope objects.

fipaos.mts.Message
The Message classis aconvenience class that contains referencesto an Envel ope and ACL object,
the two components that make up a message within the MTS (Message Transport Service).

fipaos.util.DIAGNOSTICS

This class provides a standardised API for printing debugging messages to screen and to afile,
allowing levelsto be assigned to each message. This enablesthe level of detail in debugging messages
displayed/recorded to be controlled at runtime.

Thestatic pri nt | n() methods defined by this class are the recommended mechanism for displaying
debugging information for the following reasons:

e Controllable level of detail on a per-message basis (as mentioned above)

» All debugging information can be logged to afile, at a different detail level to that displayed
on-screen

» Display/writing of debug messages is completely decoupled from code callingpri nt 1 n()
methods via a buffer, increasing application speed compared to Syst em out . println(),
which blocks until the text is displayed on some operating systems (notably Windows).

Agent Shell (FIPAOSAgent)

The FI PACSAgent class provides a shell for Agent implementation to use by simply extending this
class.

Composition of an Agent
The FI PACSAgent shell isresponsible for loading an Agent’s profile, and initialising the other
components of which the Agent is composed.

It creates these mandatory components in this order initially:

« MTS

* Task Manager

e Conversation Manager
At initialisation of the Conversation Manager, referencesto the MTS and Task Manager are passed to
enable them to be dynamically bound to the CM. Thisisall achieved viathe listener interfaces
implemented by the various components, so these components are not explicitly dependant on each

other. Figure 3 highlights the rel ationships between the classes of these core components, and the
interfaces used to remove inter-component dependence.

FIPA-OS Developers Guide

FIPAOSAgent
‘ (fomagent)
_ms \
/ T -_sender \
- \
/,’ MessageSender — \
/
(from mts) \
!/ \
/ \
-_mts ’/’ s endMessage() \
| s etMessageReceiver() \ | #_tm
| s hutdown () \
MTS -mr ConversationManager -_conversation_listener TaskManager
(from mts) (from conversation) (from task)
ConversationListener

(from conv ersation)

MessageReceiver

(from mts)
®receiveMessage() W otify()
W otify()
s etMessageSender()

s etMessageSender()

Figure 3 - Core Component Relationshipswithin FIPAOSAgent / Agent Shell
New core components could simply be added by implementing the required interfaces and passing

references to the new class at construction-time to the existing components. As can be seen, the
interfaces defined are also inter-related since they allow registration of other listener interfaces with

implementation objects:
Conver sati onLi st ener —Implementing classes are generally interested with receiving

Conver sat i on object updates from another object. Provides a method to register a
MessageSender with the underlying implementation, providing a dynamic mechanism for

binding a component that can send messages.
« MessageRecei ver —Implementing classes are interesting in receiving “raw” messages
one at atime. Provides amethod to register aMessageSender with the underlying

implementation also.
« MessageSender —Implementing classes provide adirect or indirect (i.e. they pass
messages to another MessageSender implementation) mechanism for sending ACL

messages. Provides amethod to register aMessageRecei ver with the underlying
implementation, providing a dynamic mechanism for binding a component that should receive

incoming messages.
This provides a flexible mechanism to allow the core-components to register with one another once
they have been constructed, without encountering the “chicken-and-egg” problem of which component
should be constructed first when references to it need to be passed to other components and vice versa.
Each component has an implicit reference to the FI PAOSAgent classto which they belong.

FIPA-OS Developers Guide

10

FIPAOSAgent
(from agent)

®riPAOSAgent()
[®rIPAOSAgent()
[rorward()
[#getaD()
[®getCurrentConversation()
[®getGUID()
etHAP()
etLocalAMS()
etLocal AMSAID()
etLocalDF()
etLocalDFAID()
etNewConversation()
etOwnership()
etPlatform Profile()
etProfile()
etState()
nows Protocol()
ain()
otify()
otify()
egisterWithAMS()
egisterWithAMS()
egisterWithAMS()
egisterWithDF()
egisterWithDF()
egisterWithDF()
egisterWithDF()
egisteredWith()
egisteredWithAMS()
@®egisteredWithDF()
egistrationFailed()
[®egistrationRefused()
[registrationSucceeded()
s endNotunderstood()
s endNotUnderstood()
[setGUID()
@ setListenerTask()
[®setMessageSender()

hutdown()
tartPushing()
aitForPushLock()

TaskManager
(from task)

y

[®TaskManager()
[appendToExecutionOrder()
[MgetActiveTasks ()

[#main(

[®newTask()

[®hewTask()

ewTask()

ewTask()

ewTask()

otify()

otify()
emoveTask()
emoveTask()
un()
etMessageSender()
etTaskManagerListener()
hutdown()

-_tasks_set
0..*

| owner

Agentimplementation

#_owner

Task
(from task)

ask()
ask()
ask()
FSearchResults()
one()
one()
[®doneDFSearchTask()
[errorDFSearch Task()
o rward()
@ getNewConversation()
[®getstate()
@®handleother()
@ newTask()
@ newTask()
@ newTask()
ewTask()
ewTask()
ewTask()
ewTask()
ewTask()
otify()
earchDF()
earchDF()
earchDF()
earchDF()
earchDF()
endNotUnderstood()
tartTask()
imeoutDFSearchTask()

AgentTask

Figure 4 - Agent Implementation and Relationship with Agent Shell

_parent

Figure 4 highlights how an Agent implementation relates to some of the components of the Agent
Shell.

Generally an Agent consists of a class that extends the FI PAOSAgent class, and a number of Task

implementations that contain the functionality of an Agent.

Functionality Provided by the Agent Shell
The Agent Shell provides the following functionality:

» Sending messages — Thisis accomplished by using thef or war d() method in either the

FI PAOSAgent or Task class, depending on where in an Agent implementation the message
isbeing sent from. In the former case, the outgoing message is always passed to the CM via
itssendMessage() method. Seethe Task Manager and Conversation Manager sections for

details on how messages are dealt with.

» Retrieving the Agents' properties (Profiles, AID, state) & Locating platform Agents (DF and
AMS) — numerous methods are provided to access this information from the FI PACSAgent

class.

FIPA-OS Developers Guide

11

Registration with platform Agents — The FI PACSAgent class provides

regi ster Wt hAVMS() andr egi st er Wt hDF() methods, aswell asthe call-back
methodsr egi strati onSucceeded(),registrati onFail ed() and

regi st rati onRef used() which should be overridden.

This functionality is provided by use of the AMSRegi st rat i onTask and

DFRegi strati onTask’s". Figure5 highlights how the Agent Shell creates a

ANMSRegi st rat i onTask to register with the AMS, and a callback is made to indicate the
result of that registration (NOTE: thisis only alogical representation of interactions, and
doesn't reflect the concrete interactions that occur). Reception of incoming messages from the
AMS by the TaskManager isimplicit. A similar set of interactions occur when registering
with the DF.

FIPAOSAgent AM SRegistrationTask

: Callback : TaskManager

| AMSRegistrationTask(Callback)

|
newTas k(Ta$ k) | /m

T |

: /Q startTask() :

| forward(ACL)
| |
I I L:I
| |
| |
| |]
| | L] |
: : : handleAgree (Conversation) :
| |
| | D
| | |
: : T handlelnform(Conversation) :
| | L L
: : success(AgentID)
: registrationSucceeded (String) ‘J

U done(Object)

! <]
|
|
|
|
|
|
|
|
|
I

|

e |
| |

| |

| |

| |

| |

Figure5—Logical I nteractions when Successfully Registering with AM S

Setting up Task’s— The FI PACSAgent class provides accessto the _t mvariable, enabling
direct accessto the TaskManager class & itsassociated newTask() methods. The Task
class providesnewTask() methods withinits API, which allow accessto the same
functionality as provided directly viathe TaskManager class.

Shutting down the Agent — The Agent and its components can be cleanly shutdown by
invoking the shut down() method in the FI PAOSAgent class. Thisin-turninvokesthe
shut down() method on all of the components of the Agent.

TM (Task Manager)

The Task Manager provides the ability to split the functionality of an Agent into smaller, digoint units
of works known as Tasks. The aim isthat Task's are self-contained pieces of code that carry out some
task and (optionally) return aresult, have the ability to send and receive messages, and have little or
preferably no dependence on the Agent they are executed within. This provides a number of benefits:

! These classes are not part of the FIPA-OSv1.3.2 distribution, but are available separately from our
SourceForge CVSrepository. (They will be/are bundled with later distributions).

FIPA-OS Developers Guide

12

e Tasksare highly re-usable - they can be used in many Agents without having to re-write the
same code / functionality.

» Easy to debug, since tracking the flow of control is simple (Task’s are completely event-
based) and useful debugging messages help to indicate when task-interactions fail/are
unhandled.

* AnAgent can execute multiple Tasks at once — the Task Manager takes care of routing
incoming messages and other events to the right Tasks, rather than using a“cludge” of code
within the Agent itself to decide what to do with a particular message.

» Conversation state is effectively encapsulated within a Task, reducing the manual tracking of
Conversations to a bare minimum.

e Taskscan spawn child-tasks — this enables complex Task’s to be created through simply
utilising simpler Task within them.

Composition of the TM
The TaskManager itself iscomposed of several parts, depicted in Figure 6.

-_ms
Mes:;:]reSe -_children
(from mts) 0"*1 ;
TaskManager -_tasks_set Task
07 (from tas) (from task) 0..1 _parent
*
ConversationLis 0.
tener \ #_tm
(from conv ersation) \
\ tm _state
\
- tm_listener |
O \ TaskState
\
\ (from task)
\
TaskManagerL ! - S TASK_IDLE : int=0
istener DefaultTaskManagerListener

185 TASK_EXECUTING :int=1
(from tasky (from Tasanager) % TASK_READY_TO_START :int=2
555 TASK_READY_TO_CONTINUE :int=3

#tas kEvent()

_events

0.*

TaskEvent
(from event)

Initialised Event ConversationUpdateEvent ChildDoneEvent ChildTimeoutEvent ChildFailureEvent
(from event) (from event) (fom event) (from event) (from event)

A
ChildDoneWithR es ultEvent
(from event)

Figure 6 - TaskM anager Class Relationships

The TaskManager class provides the coordination mechanism for Task‘swithin an Agent. All
active Task’sarereferenced fromthe t asks_set of the TaskManager object.

FIPA-OS Developers Guide

13

The TaskManager also has referencesto aMessageSender to enable sending of messages from
the TaskManager , and implementsthe Conver sat i onLi st ener interface so that it can be
informed of conversation-updates.

Task Events

The entire Task Manager component is built around event-based processing. Every Task within the
TM has a queue of pending events of type TaskEvent . The TaskManager generally processes
these eventsin the order they are generated for a particular Task. The TaskEvent 'scurrently
handled are listed in Table 1, along with the listener methods invoked when they are delivered to a
Task.

TaskEvent Listener Method | Description

I'nitialisedEvent public void Indicates that a Task has been initialised
startTask(| and jsready to start (i.e. itsst ar t Task()
) method should be invoked — sub-classes
should override this method, which has a
default implementation that does nothing).
Conver sat i onUpdat eEvent public void Indicates that a new message that is part of a
handl eX(| conversation that the Task isinvolved in
gﬁn;’er Satl | has been received, and needs to be dealt
with. Thiswill cause a method with the
given signature to be invoked, where X isthe
performative of the last message in the
conversation received. |If such a method
does not exist within the Task, the
handl e her () method will be invoked,
which has a default implementation that
sends a not-understood in response to the
last message (implicitly ending the
conversation).
Chi | dDoneEvent public void Indicates when a child-Task completes.
gg;‘i)% Thiswill cause amethod of the given
signature to be invoked on the Task, where
Xisthe name of the child-Task (by default
thisisthe classname of the child-Task). If
no such method exists, awarning message
will be printed at the maximum
DI AGNGSTI CS level.
Chi | dDoneW t hResul t Event public void Indicates when a child-Task completes, and
doneX(has produced aresult. This causes a method
j ect) of the given signature to be invoked in the
same manner as for the
Chi | dDoneEvent , except the result
object is passed as an argument.
Chi | dTi meout Event public void Indicates that a child-Task timed-out before
timeout X(| it had a chance to complete. This causes a
Task) method of the given signature to be invoked,
where X isthe name of the child-Task (by
default thisis the classname of the child-
Task). If no such method exists, awarning
message will be printed at the maximum
DI AGNGSTI CS level.
Chi I dFai | ur eEvent public void Indicates that achild-Task failed (i.e. threw
%;ck” X(an un-caught exception) whilst processing a
’ TaskEvent forit. Thiscausesamethod of

Thr owabl e
) the given signature to be invoked, where X is

FIPA-OS Developers Guide

14

TaskEvent

Listener Method | Description
the name of the child-Task (by default this
isthe classname of the child-Task). If no

such method exists, a warning message will
be printed at the maximum DI AGNOSTI CS
level.

Table1- TaskManager Event Types

The TaskManager decideswhen to pass the event to the receiving Task based upon the current state
of the Task (encapsulated by the Task St at e class), and the order it isinstructed to deal with the
Task’swhich have pending events.

Task Manager Listener
In order to support the ability for TaskEvent ’s (and therefore the execution of Task’s) to be
scheduled by some external component?, the TaskManager doesn't directly decide in which order to
deal with Task’s. Figure 7 highlights the interactions between aTaskManager and a
TaskManager Li st ener when newTask() isinvoked.

TaskA : Task

TaskB : Task

Task()

tm :
TaskManager

TaskB. state :

TaskState

g

newTask(Task)

=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

notifyStart()

=

|
|
|
|
|
addEvent(Task, TaskEvent) |
|
|
|
|

addEvent(TaskEvent)

taskEvent(Task, :TaskEvent)

g

O

tm._tm_listener :
TaskManagerlListener

|
appendToExecutianrder(Task)

!

T

getState()

startTask()

getNextEvent()

g

g

dealWithTask(Task, TaskEveni)

N

|

Figure7 - newTask() - TaskM anager and TaskM anager Listener Concrete Interactions

Whenever anew TaskEvent isgenerated, it is passed to the registered TaskManager Li st ener .
The particular implementation behind this interface can then instruct the TaskManager inwhich
order to execute the Task’sit has with pending events (NOTE: It cannot instruct the TaskManager
as to which eventsto deliver, since we wish to ensure events arrive at a Task in the order they occur

2 For example, the new Planner Scheduler when it is ready for release.

FIPA-OS Developers Guide

15

with regard to that Task). A default implementation of the TaskManager Li st ener interfaceis
provided, the Def aul t TaskManager Li st ener class—thissimply allows Task’sto be executed
in the order events arrive for those Task’s.

Starting a Task

Whenever a Task is created, it should be registered as atop-level task viaanewTask() method of
the TaskManager , or viaanewTask() method of another Task. Inthe later case, the new Task
isregistered as achild-Task of the other Task, and thusthe _par ent field of the new Task
references the other Task, andthe chi | dr en Set of the other Task contains a reference to the new
Task.

NOTE: The TaskManager initialisesa number of instance variablesin the Task when
newTask() isinvoked —the behaviour of methods defined by the Task class are only defined
AFTER thenewTask() method hasreturned, hence codein the Task’ s constructor should
NOT utilise any methods from the Task API.

SomeAgent : SomeTask : SomeTask. state : SomeAgent. tm :
FIPAOSAgent Task TaskState TaskManager
| Task() |

|
|
|
newTask(Task) :

addEwent(Task, TaskEvent)

addEvent(TaskEvent) 2

checkState()

|
|
|
|
|
|
|
|
|
|
|
|
:
|
: getState() < 1
Q\ getNextEvent()

dealWithTas k(Task, Tas kEvent)

|
notify‘rStart() %
1
|
|
|
|
|
|
|
|
|
|
|
|

startTask()
ZI

R

Figure 8 - FIPAOSAgent / Task / TaskM anager newTask() Concrete Interactions

Asshown in Figure 8, once a Task has been initialised, from a Agent developers point of view the
start Task() method will be invoked — it is advisable given the above to start any processing for the
action to be carried out to occur within this method. To enable this to happen, an
InitialisedEvent isgenerated and added to the queue of TaskEvent 'swithinthe Task’s
TaskSt at e object. Whenthe TaskManager eventually comesto deal with thisTaskEvent , the
start Task() method isinvoked on the Task.

There are also a number of alternative waysto use newTask() to start aTask. Other than the ability
to relate a conversation with a Task, atime-out can be specified for a Task, at which point its parent-
Task will beinformed. Figure 9 highlights the interactions between the parent-Task,

TaskManager and child-Task when aTask is started with atimeout, and that timeout is reached.

FIPA-OS Developers Guide

16

TaskB. state :
TaskState

‘ TaskA : Task : TaskManager

TaskA. state:
TaskState

L | |
\

newTask(Task, long)

m—

newTas k(Taﬁk, long, Task) ‘

addEvent(Task, TaskEvent)
addEvent(TaskEvent)

F 7

cihecksete()
=1

getNextEvent()

getState()
dealWithTask(Task, TaskEvenf)

—
notify%tan()

startTask() ‘
S

startTimeout() ‘
—

addEvent(Task, TaskEvent)

[removeTask(Task)

e O S

EV timeoutTaskB(Task)

checkState()
=1
‘ getState() ‘
‘ getNextEvent() ‘
dealWithTask(Task, TaskEvent)
[=—
notify Timeout(Task)
‘ ‘ T

1
|
|
|
|
|
|
|
|
|
|
|
|
a
i
|
|
|

Figure9—Task / TaskManager Concrete I nteractions when Timeouts Occur

Parent-Task and Child-Task Communication

In order for Task’sto be able to interact together, a number of simple communication events have
been produced for use within the TaskManager . Asdescribed previously, these events allow a
parent-Task to be informed when one of its child-Tasks completes, times-out or fails. Theam isthat
these simple events provide the basis for allowing Task’sto interact together without creating explicit
dependenci es between them.

Figure 10 highlights the logical interactions between a number of parent/child-Task’s. Asdescribed
previoudly, st art Task() isinvoked after newTask() hasbeeninvoked onaTask, and
doneX() isautomatically invoked on the parent after a child-Task invokes either of done() or
done(CObject).

FIPA-OS Developers Guide

17

1: startTask()

—_— ParentChildTask :
Task

ParentTask : Task

~
4:doneParentChildTask(Object)

3:doneChi|dTask(Task)/\ \/ 2: startTask()

ChildTask : Task

Figure 10- Multiple Nested Parent / Child Completion Logical I nteractions

Task Messaging

Task’s enable multiple conversations to be conducted simultaneously without an explicit need to track
conversation state. As per the FI PACSAgent class, af or war d() method is provided as part of the
Task API to enable Task’ s to send messages, and acts as per Figure 11. The TaskManager hasa
reference to aMessageSender , to which it passes al outgoing messages viaitssendMessage()
method.

TaskA : Task TaskA. tm : TaskA. tm._ms :
TaskManager MessageSender
|

forward(ACL, Task)

|
2 forward(ACL) :
|
|

1

sendMessage(Message)

Figure 11 — Concrete I nteractions when Forwarding a M essage from a Task

Whenever a Task sends a message, the conversation the message is part of is automatically bound to
that Task (even if no explicit conversation id is provided, the TM ensures oneis created) — this
ensures that any subseguent messages received which form part of that conversation are passed to that
Task. Figure 12 highlights the interactions between the TaskManager and a Task when receiving
an incoming message — since the TaskManager implementsthe Conver sat i onLi st ener
interface, it is notified of conversation updatesviathenot i f y() method. The binding between
Task and Conver sat i on can also change—if one Task starts a conversation, another can continue
it by ssimply sending a message as part of that conversation, or by being initialised using a suitable
newTask() method.

FIPA-OS Developers Guide

18

TaskA : Task TaskA._ state : TaskA. tm : TaskA. tm. ms :
TaskState TaskManager MessageSender

‘ notify (Conversation)

|
|
|
:addEvent(TaskEvent Z addEvent(Task, TaskEvent)

getState() '« 1 checkState()

getNextEvent()

|
| :I dealWithTask(Task, TaskEvent)

notify (Conversation)
T

% handleX(Conversation)

Figure 12 - Concrete I nteractions when TaskM anager Receives a M essage

In the event that no Task isbound to the conversation of an incoming message, a default Task should
be provided to deal with it (thisis achieved by invokingtheset Li st ener Task(Task) method
of FI PACSAgent) —thisis generally only the case with new incoming conversations, hence a new
Task should be spawned to deal with the interactions with the other Agent.

Other Useful Task APl Methods & Fields
The Task class also provides a number of other useful methods for use by sub-classes.

 searchDF() —avariety of sear chDF() methods are provided to initiate a search on
either alocal or remote DF. Thisis achieved through automated use of the DFSear chTask,
which resultsin the DFSear chResul t s(DFAgent Descri pti on[]) method being
invoked on the initiating Task once the DFSear chTask has completed (see Figure 13).
Thisis achieved through default implementations of doneDFSear chTask() and
err or DFSear chTask() methodsinthe Task super-class, so care should be taken if these
methods are overridden.

FIPA-OS Developers Guide

19

TaskA : Task DFSearchTask
: Task

ZI searchDF(DFAgentDescription)
DFSearchTask()

|
|
|
1
startTask() u

2 forward(ACL)

-

%l handleAgree(Conversation)

doneDFSearchTask(Object) [handlelnform(Conversation)

=] DFSearchResults(DFAgentDescription[])

Figure 13 - Logical searchDF() Interactions

* sendNot Under st ood() — provides a convenience mechanism for replying to a message
with a not-understood.

» get NewConver sati on() —another convenience method for creating a new conversation
which is bound to this Task.

* _t m—referenceto the TaskManager that managesthe Task.

 _owner —referencetothe FI PAOSAgent that ownsthe Task.

CM (Conversation Manager)

The CM provides the ahility to track conversation state at the performative level, aswell as
mechanisms for grouping messages of the same conversation together. If a conversation is specified as
following a particular protocol, the CM will ensure that the protocol is being followed by both the
Agent it is part of, and the other Agent involved in the conversation.

FIPA-OS Developers Guide

20

Composition of the CM

-_database

Database

(from db)

®addObject()
Miclos eDatabase()
$createDatabase ()
WcreateRelation()
$deleteDatabase ()
HdeleteRelation()
®endTransaction()
WindObject()
Mg etiDs()
®openDatabase()
®rem oveObject()
& em oveObject()
s tartTransaction()
®updateObject()

FIPARequestWhen
(from protocol)

FIPABrokering

(from protocol)

-_conversation_listener O

ConversationManager
(from conversation)

o+ -_active_list

Conversation
(f rom conv ersation)

ConvérsationListener
(from conv ersation)

—
-_sender
e E—

ot fy()
B otify()
s etMes sageSender()

O

MessageSender

(from mts)

"sendMessage()
s etMessageReceiver()
®¥s hutdown()

O

MessageReceiver

(from mts)

W eceive Message()
s etMes sageSender()

FIP AContractNet
(from protocol)

FIPARecruiting

(from protocol)

NoProtocol FIPAAuctionDutch

FIPAAuctionEnglish

FIPARequest

(from protocol)

(from protocol)

(from protocol)

(from protocol)

FIPAQuery

(from protocol)

FIPAlteratedContractNet

(from protocol)

Figure 14 - Conversation Manager Composition

Figure 14 highlights the key classes that compose the Conver sat i onManager and their
relationships. The Conver sat i onManager implementsthe MessageRecei ver interface so it
can deal with incoming messages, the MessageSender interface to enable other components to send
messages viait, has areferenceto aMessageSender implementation to enable it to send messages,
and has areferenceto aConver sat i onLi st ener so that it can pass updated conversationsto
components that implement this interface.

Conver sat i on objectsrepresent individual conversations, and encapsulate all of the state
information and messages sent and received as part of that conversation. Hence they perform the
necessary validation of the protocol being used by the conversation, and provide mechanisms for
discovering what messages have been sent/received, and the messages that should be sent next.

The Conver sat i onManager aso hasareferenceto aDat abase implementation to enable
Conver sat i on objectsto be stored once they are no longer active (i.e. when the conversation they
represent has completed). A Map of active Conver sati on’ s iskept by the

Conver sat i onManager , enabling quick look-up upon receipt of a message.

Various speciaisations of the Conver sat i on class are provided to enable different protocolsto be
supported. Each specialisation simply defines the protocol (in terms of performatives) to be followed
for aparticular conversation of that protocol type.

FIPA-OS Developers Guide

21

Protocol Definition

The protocol a particular conversation type follows is defined by specifying a class variable
(__protocol) containing atree-like structure defining the protocol. Thisis achieved through
specifying an Obj ect [] for each nodein the tree, with details of what performative is expected next
from which Agent in the conversation, what the desired action is (inform the Agent, ignore etc...) and
referencesto its' child-nodes.

The standard form of the Obj ect [] for anodeis:
{ <String performative>|[, <Integer action>], <Integer participant>],
<hj ect[] child_node>]}

which can be repeated to represent multiple possibilities at each node, where:
« performative isthe performative of the next message to be received.

* acti on (optional) isthe type of currently supported action which should occur when this
message arrives. Thisis one of:

0 AGENT_ACTI ON_REQUI RED - recipient Agent should be informed of the arrival of
this message

0 CONVERSATI ON_END - thisisthe end of the conversation (always reported to the
recipient Agent). Thisvalueisimplicit if afollowing chi | d_node isnot defined
given the arrival of this message.

0 NO_AGENT_ACTI ON_REQUI RED - recipient Agent shouldn’t be informed of the
arrival of this message.

e parti ci pant indicates which Agent should send the message (0 is used for the initiator of
aconversation, 1 for the recipient of the first message in the conversation).

« chil d_node isareference to another Cbj ect [] which should become the current node
when a message of thistype is received.

The protocol definition can contain loops (although these will need to be closed using a static
initialiser), and handling of “not-understood” messagesisimplicit.

KEY

Request

Message from

X initiator with
performative X

Agree Refuse Message erm
Y recipient with
’—k—‘ performative Y
Inform Failure

Figure 15 - Example M essage Protocol

Figure 15 is an example protocol, which could be “encoded” using the following Java codein a
Conver sat i on sub-class.

public static Object[] __ agree = { “infornf, new lInteger(1),
“failure”, new Integer(1) };

FIPA-OS Developers Guide

22

public static Object[] _ request =
{ “agree”, new Integer(AGENT_ACTION REQUIRED), new Integer(1), __agree,
“refuse”, new Integer(1) };

public static Object[] _ protocol =
{ “request”, new Integer(AGENT_ACTION REQU RED), new Integer(O), __request };

Messaging

Figure 16 highlights the interactions involved when the Conversation Manager deals with an incoming
message. It receivesthe message viather ecei veMessage() method of the MessageRecei ver
interface it implements, and proceeds to add the message to an existing Conver sat i on object
(which encapsul ates the state of a particular conversation), or creates a new oneiif thisisthe first
message of a conversation. The fact that the Conver sat i on has been updated is added to a queue
within the Conversation Manager, so that Conver sat i on updates can be dealt with in the order they
occur. Inthe event that a message cannot be added to aConver sat i on (perhaps because doing so
would violate the protocol the conversation is following), a not-understood is automatically generated
in response, and the Conver sat i on is brought to an end (the updated Conver sat i on object will
be added to the queue of pending Conver sat i on’s).

Sometime later, aMoni t or pullsthe updated Conver sat i on from the queue, and passes it to the
Conversation Managers' registered Conver sat i onLi st ener to be dealt with.

@) o e}
- O
B ‘ Conversation ‘ < Queue ‘ ‘ - Monitor
e Conve sationManager -
g o .
MessageSender MonitorListener ~ ConversationListener
‘ receiveMessage(Message) ‘
handleMessage(Message)
p=—
addMessage(Message) ‘ ‘ ‘
dealWithConversation(Conversatipn)
[=—
addltem (Object)
momlorUpdateLbject) ‘

/g getltem ()

"
‘ {’ notify(Conversation))

Figure 16 - Interactions when Receiving a M essage

Figure 17 depicts the interactions that occur when a message is being sent via the Conversation
Manager. Inthiscase, theregistered Conver sat i onLi st ener invokesthesendMessage()
method (defined in the MessageSender interface, which the CM implements) on the Conversation
Manager. The message isthen added to the Conver sat i on it belongsto, or anew oneis created if
the message is the start of anew conversation. Assuming thisis successful, the message is sent viathe
MessageSender implementation registered with the Conversation Manager. In the event that a
problem arises, at present a DI AGNOSTI CS message is displayed on screen.

In the future it is hoped more sophisticated error handling mechanisms will be introduced into the
Conversation Manager, such that erroneous messages are passed back to the
Conver sati onLi st ener to be dealt with.

FIPA-OS Developers Guide

23

. - : Conversation .
= ConversationManager ionLi
MessageSender ConversationlListener

sendMessage(l»Tlessage)

handleMessage(Message)

addMessage(Message)

p—

sendMessage(Message)

dealWithConversation(Conversation) /I‘ﬁ

\
[~
\
|

Figure 17 - Interactions when Sending a M essage

MTS (Message Transport Service)
The MTS provides the ability to send and receive messages to an Agent implementation.

Composition of the MTS

The MTS within FIPA-OS islogically split such that incoming and outgoing messages pass through a
number of services within a“ service stack” (see Figure 18). Each service is a stand-alone component
that performs some transformation on outgoing messages, and the inverse transformation on incoming
messages. This model is used for the following reasons:

» ldeally each service performs its own function on incoming and outgoing messages — this
enables the functionality of the MTS to be split into distinct decoupled components that can be
individually tested (e.g. routing of messages to the ACC could be once service, whereas
buffering messages could be another). Due to the non-trivial required behaviour of the MTS,
itislogical to break the implementation of the requirementsinto individual components which
in conjunction meet the overall requirements of the MTS.

» Addition of functionality to the MTS simply requires a new service to be created.

» Extraservices can be dotted into the stack at runtime, due to lack of compile-time bindings
between services.

FIPA-OS Developers Guide

24

| KEY
| Agent | f Incoming
| Messages
- Outgoing
Messages

Service Stack

Service 3

Figure 18- Logical Composition of the M TS

The MTS class implements the MessageSender interface, through which it provides access to the
stack in use. Upon receipt of an outgoing message, it isimmediately pushed into the stack. Whenever
an incoming message is pushed from the top of the stack to the MT'S class, it is passed to the
MessageRecei ver registered with the MT'S — hence outgoing/incoming messages are pushed out
of/in to the MT'S instance in use by an Agent. Figure 19 highlights the class rel ationships for the MT'S
class.

MTS - mr
O (f rom mts) O
MessageSender Message Receiver
(from mts) -this$0 (from mts)
[endMessage() eceiveMessage()
s etMessageReceiver() etMessage Sender()
[®&hutdown()

InternalStack
(fom MTS)

-_next
PreParserSer

vice
(from service)

incoming()
[Mnitialise()
[Moutgoing()

Figure 19- MTS Class Relationships

At present the services used in the MTS stack are hard-coded. In the future thiswill be dynamically
determined based upon the profile of the Agent it belongs to.

FIPA-OS Developers Guide

25

The MTS stack generally has two forms - one for internal transports, and another for external
transports. Theinternal transports generally deal with aMessage object, whereas external transports
deal with an Envel ope objectand abyte[] .

In either case, if a message cannot be sent, it will be propagated back up the stack for either another
service to deal with, or the Agent implementation. This enables services higher up the stack to deal
with error conditions before resorting to passing a message back to the Agent.

Services

Services within the stack implement at bare minimum the Ser vi ce interface, although in order to
bind services together they must implement either the Pr ePar ser Ser vi ce or

Post Par ser Ser vi ce interfacesthat extend the Ser vi ce interface (see Figure 20). The

Ser vi ceSt ack classis provided to simplify the process of dynamically binding Ser vi ce
implementations together using thei ni ti al i se() method, sinceit will do thisfor all servicesit
containswhenitsi ni ti al i se() method isinvoked.

<<Interface>>
Service
D\ (from service) /j‘
#shutdown()
<<lInterface>> <<Interface>>
PreParserService PostParserSenice
(from service) (from service)

#incoming() ®incoming()
Hinitialise() Hinitialise()
®outgoing() ®Woutgoing()

Figure 20 - Service Interface Relationships

The Ser vi ce interface also defines a number of failure reasons to be used with the Envel ope
get Err or Code() /set Er r or Code() methods.

Pre-Parser Services
Services that implement this interface are expected to deal with Message objects, which encapsulate
an Evenl ope and an ACL object. In abstract terms, Pre-Parser Services deal with Objects.

Post-Parser Services

Services that implement this interface are expected to deal with messagesin the form of an Envel ope
and byt e[] tuple, wherethebyt e[] representsthe content of the envelope (i.e. the ACL message).
In abstract terms, Post-Parser Services deal with “serialised” /" stringified” messages.

Parser Service

The Par ser Ser vi ce isaconcrete Ser vi ce implementation — it implements both the

Pr ePar ser Ser vi ce and Post Par ser Ser vi ce interfaces, providing atransation mechanism
between the Object-Orientated Pre-Parser Services, and the flat byt e[] representation of Post-Parser
Services (i.e. it takes care of all necessary parsing and de-parsing with regard to incoming and outgoing

messages).

FIPA-OS Developers Guide

26

Service
(from service)
s hutdown ()
- previous ParserService - next
C\ - (from service) - D
_)
PreParserSer PostParserS
vice ervice
(from service) (from service)
Fncoming() FWincoming()
Wnitialise() Wnitialise()
Soutgoing() Soutgoing()

Figure 21 - Par ser Service Class Relationships

Pre-Built Services

Bundled with FIPA-OS you'll find a number of "general-purpose” service implementations - some
implement both the Pr ePar ser Ser vi ce and Post Par ser Ser vi ce interfaces since they can be
placed anywhere in a stack (although they don't provide a trandation mechanism such as the

Par ser Ser vi ce — services both below and above these services must implement the same
interface).

e BufferServi ce—Thisservice implements both Pr ePar ser Ser vi ce and
Post Par ser Ser vi ce interfaces (see Figure 22). Its purposeisto decouple services within
a stack by providing a FIFO queue in each direction within the stack between the services.

—T>O
Service ——tamgets]]
(from service)
s hutdown()
BufferSenvice - |
Q (from service) ¥>
PreParserSer PostParserS
vice ervice
(from service) (from service)
Bincoming() BEncoming()
Hnitialise() initialise()
Houtgoing() Soutgoing()

Figure 22 - Buffer Service Class Relationships

e« Commwul ti pl exServi ce — Provides a mechanism for multiple MTP sto be joined to the
bottom of a stack, and implements both Pr ePar ser Ser vi ce and Post Par ser Ser vi ce
interfaces (see Figure 23), It provides support for the MTP' s to be used to send messages as
per the FIPA MTS Specification [4] (i.e. attempting to use the MTP's based upon the order of

FIPA-OS Developers Guide

the URL’ s within the intended-receivers AID addressesfield). In the event that none of the

available MTP's are able to send the message, it is propagated back up the stack with an
appropriate error number.

I~
>O=I—
Service _\\\
-_previous

(from service)

s hutdown ()

Comm MultiplexService
() (from service) O
PreParserSer PostParserS
vice ervice
(from service)

(from service)

#®Encoming() Mncoming()
Wnitialise() Wnitialise()
Foutgoing() Soutgoing()

Figure 23 - CommM ultiplexor Service Class Relationships

ACCRout er Ser vi ce — This service implements the Pr ePar ser Ser vi ce interface only.
Generally it passes outgoing messages straight through, and only takes notice when it receives
an outgoing message that has been bounced back up the stack. In this event (depending on the
reason why it has been bounced) it will be pass back down the stack, indicating that the
message should be forwarded to the ACC in order to be sent. Hence this service routes
messages (where appropriate) to the ACC.

—>O<I—

Service

(from service)

s hutdown ()

ACCRouterService
-_hext =
= (from preparse) ()

PreParserSer
vice
(from service)

PostParserS
ervice
(from service)

ncoming() Wncoming()
HWnitialise() Wnitialise()
Foutgoing() Houtgoing()

Figure 24 - ACCRouter Service Class Relationships

MTP’s (Message Transport Protocols)

MTP’s provide the mechanisms for sending and receiving messages from one Agent to another. Figure
25 highlights the relationships between MTP related classes.

FIPA-OS Developers Guide

28

— >0O<] O
PreParserSer Senice ‘0/ PostParserS
vice i | (from service) 0‘ ewlce_
(from service) \‘ S — ‘0 (from service)
_rom servies) — | _tomeeeEs
\ | —_—
|
Mncoming() ‘0 il hutdown() | Wncoming()
Wnitialise() \ | Hnitialise()
®outgoing() \‘ | ®outgoing()
‘, MTPBase | _
\‘—_previous (from mts) | ~Pprevious
|
| |
‘\ @ind(|
| #¥ookup() |
| @™ookup() |
| end() |
\‘ eceive() |
| nbind() /
| {#®¥handleincoming() |
\‘ {#¥handleOutgoing() |
\‘ [@¥shutdownMTPBase() /
| |
\ |
‘\ s
| |
| |
|
| |
‘\ s
‘\ |
InternalMTPBase ExternalMTPBase
77*07 (fom mty (from mts) 70*7—
InternalMTP ExternalMTP
(from mts) (from mts)
Wy etAddress() WyetAddress()
®ygetProtocols() SyetProtocols()
RMIComms SUNIIOP Comms
(from internal) (from external)

Figure 25 - MTP Class Relationships
MTPBase Class

The MIPBase class contains functionality that is common across a number of MTP's. Thisincludes

handling incoming and outgoing messages, raising appropriate exceptions and error messages and other
general behaviour. The MTPBase class dealswith { Envel ope, Obj ect } tuples, where the

Envel ope determines the behaviour of the MTP, and the Obj ect isthe payload of the message.

Thel nt er nal MTPBase and Ext er nal MTPBase classes specialise the MTPBase classto a
particular type of MTP — either internal or external —and simply provides a translation mechanism
between the | nt er nal MI'P and Ext er nal MIP interfaces and the functionality defined by the
MTIPBase class (i.e. providing the following translations respectively: Message < {Envel ope,

hj ect } and{Envel ope, byte[]} & {Envel ope, Obj ect }). An MTP classwhich extends
either of these classesis required to implement the following methods:

public fipaos.util.URL get Address()
A simple mechanism to retrieve the URL’s for thisMTP

public java.util.List getProtocol s()
A simple mechanisms to retrieve the URL protocol types that an MTP can deal with

public void shutdown()
Invoked when the MTP should be permanently shutdown

FIPA-OS Developers Guide

29

e protected void bind()
Invoked when the MTP should startup/bind to a Naming Service

e protected void unbind()
Invoked when the MTP should shutdown/unbind from a Naming Service (perhaps
temporarily)

e protected nject |ookup(URL nane)
Looks up a M TP specific reference (in the form of the returned Obj ect) to the given URL

e protected hject |ookup(String name)
Looks up a MTP specific reference (in the form of the returned Cbj ect) to the given Agent
name (of the form agent@hap).

and depending on whether Internal M TPBase or External M TPBase is being extended, respectively
either:

e protected void send(Cbject target, Message nsg)
Send the given message to the given target (the target Obj ect will have been obtained from a
previous call to| ookup(), soit can be type-cast to whatever type the implemented
| ookup() method returns).

or:

e protected void send(Cbject target, Envel ope env, byte nsg[])
Send the given message to the given target (the target Obj ect will have been obtained from a
previous call to| ookup(), soit can be type-cast to whatever type the implemented
| ookup() method returns).

An MTP implementation does not have to extend these classes, just implement the | nt er nal MIP or
Ext er nal MIP interfacesin order to be used with FIPA-OS. The advantage to extending a sub-class
of MTPBase class is however that the MTP class simply has to implement a small humber of methods
that simply deal with matters directly related to the MTP implementation.

Internal MTP’s
An MTP generally fallsinto this category if:

e |t provides a proprietary transport mechanism
» Aimsto provide efficiency rather than inter-operability

» Does not require the message or its envelope to be prepared for its use (i.e. stringified or
seridlised in any form)

Internal MTP's are the main type of transport used by Agents within a platform, assuming that the
majority of communications are intra-platform.

Figure 26 and Figure 27 highlight the interaction involved internally when messages are sent and
received withinan | nt er nal MTPBase sub-class.

FIPA-OS Developers Guide

30

O

PreParserServi

outgoing(Message)

IntemalMTPBase

. bind()

1

handleOutgoing(Enwelope, Object)

lookup(URL)

11

send(Object, Envelope, Object)

1

send(Object, Message)

|

unbind()

1

|

Figure 26 - Interactions When Sending a M essage (incl. binding and unbinding of M TP which
only normally occurswhen an Agent starts/stops)

O

PreParserService

incoming(Message)

Internall\?TPBase

|
| handlelncoming(Message)
Il

handlelncoming(Envelope, Object)

|

receive(Envelope, Object)

1

incoming(Message)

—

-

Figure 27 - Interactions When Receiving a M essage

External MTP’s
An MTP generally fallsinto this category if:

FIPA-OS Developers Guide

31

e |t provides a standardised transport mechanism (i.e. following a particular FIPA specification)

« Aimsto provide inter-operability rather than efficiency

* Requiresthe messageis prepared in some form before it is passed tois (i.e. stringified or
serialised in some form).

External MTP' s are currently only used by the ACC (although thiswill change when MTS profiles are
introduced, allowing individual Agents to make use of external transports).

Figure 28 and Figure 29 highlight the interaction involved internally when messages are sent and

received within an Ext er nal MTPBase sub-class.

@)
o/

PostPa_[s erServ

ExternalﬁTPBase

outgoing(Enwvelope, byte[])

! bind()

|

|

handleOutgoing(Envelope, Object)

1

lookup(URL)

|

send(Object, Envelope, Object)

1

send(Object, Envelope, byte[])

1

unbind()

1

Figure 28 - Interactions When Sending a M essage (incl. binding and unbinding of M TP which
only normally occurswhen an Agent starts/stops)

FIPA-OS Developers Guide

32

O

PostPars_erService Extema|MTPBase

handlelncoming(Envelope, byte[])

=

handlelncoming(Envelope, Object)

|

receive(Envelope, Object)

incoming(Envelope, byte[])
incoming(Envelope, byte[])

s

Figure 29 - Interactions When Receiving a M essage

Bundled MTP Implementations
FIPA-OS currently comes bundled with the following M TP implementations that are specialisations of
the MTPBase class.

RMI

The RMI transport is based upon Sun’s RMI implementation that is part of the core Java 1.1 and Java 2
Standard Edition API. Due to the fact that this transport relies upon the use of Java Serialisation to
encode messages, it is not interoperable with Agents written in languages other than Java. However,
this also meansthat it is much more efficient for communications between Agents written in Java (i.e.
currently all FIPA-OS Agents). Thus, thistransport is an Internal MTP.

IIOP

The I1OP transport is based upon Sun's CORBA implementation that is part of the Java 2 Standard
Edition API (although it is not a core Java component). It is compliant with the FIPA 11OP MTP
specification [5], and hence is potentially interoperable with an Agent written in any language that
supports CORBA, and this specification. Hence, thistransport is an External MTP.

Database Factory

The Database Factory provides a mechanism for instantiating a particular instance of a class that
implements the Dat abase interface. Figure 30 highlights some of the relati onships between classes
related to the Database Factory.

Based upon some criteria passed as arguments to the Dat abaseFact or y class (i.e. the class-name at
present), the Dat abaseFact or y instantiates an appropriate Dat abase implementation and returns
thereference. The aimisthat different types of database can be used transparently by a particular
Agent. The Dat abase interface defines the required semantics of any object implementing that
interface.

The only requirement of objects that can be placed into aDat abase implementation is that they
implement the Dat abasehj ect interface, which implies the objects are serialisable.

FIPA-OS Developers Guide

33

DatabaseFactory
(from db)

®getDatabase()
WgetDatabase()

NoDatabase

(from nodatabase)

MemoryDatabase

~_ database_contentso_ %

O

(from memory database)

SerializationDatabase
(from s erializatio nd atabase)

/

Database

(from db)

WcreateDatabase()
WopenDatabase()

DatabaseObject

(from db)

Mg etObjectiD()

WcloseDatabase()
WdeleteDatabase()
Waddobject()
#findObject()
®updateObject()
®removeObject()
®removeObject()
WcreateRelation()
®deleteRelation()
WstartTransaction()
WendTransaction()
WgetDs()

Figure 30 - Database Factory Class Relationships

NoDatabase
Thisisadummy Dat abase implementation, providing no storage mechanisms whatsoever for
Dat abaseObj ect 's—all methods either return null or take no action.

MemoryDatabase
This Dat abase implementation is a transient database which loses its contents when the VM the
Agent it is contained within closes.

SerialisationDatabase

This Dat abase implementation provides a simple persistent database mechanism, which uses Java
serialisation to writeindividual Dat abasehj ect 'sto files within the host computers file-system.
WARNING: No guarantees about the robustness or scalability of this implementation have been made.

Future Work
This section highlights areas of future work that might be considered.

Improved Profiles

Due to the increasing range of machines FIPA-OS Agents are being deployed onto, it is envisaged that
through improved profile support for core-components and optional components Agents can simply be
adapted through profile modification.

Planner Scheduler

In order for FIPAOS Agents to become more proactive and goal based, a new and improved Planner
Scheduler may be introduced to enable this. The aim isthat FIPA-OS Agent development can be
simplified through use of profilesto determine the goals of an Agent, and the Agent will draw upon
Task instances it knows about to achieve those goal's (though cooperation with other Agents or
individualy).

Agent Component Monitoring

The ability for an Agents state to be monitored might be considered to enable the Planner Scheduler to
become aware of what resources an Agent has available, and how to best re-arrange work to meet
commitments.

This could involve monitoring of the number of pending messages/conversation updates/tasks to be
dealt with, and re-prioritising work based upon the current situation the Agent finds itself in.

FIPA-OS Developers Guide

34

Chapter 3
Optional Components

Parser Factory

The aim of the Parser Factory is to provide automated transparent parsing and deparsing mechanisms
for multiple languages to a language-neutral semantic-maintaining representation. This component is
unfinished, so FIPA-OS does not currently support this functionality at present.

A subset of the required classes for this functionality have been produced however. FIPA-OS includes
anumber of parsersthat conform to a standard interface and use generic objects to represent the
semantic information within a message (although they still require language/parser specific
information).

Figure 31 highlights some of the key classes within the Parser Factory (note the deliberate absence of a
Par ser Fact or y class).

Content
(from content)

Exception WContent()
(rom 1ang) RDFContentHandler #Content()
= (fromird) ®|Content()

/ K Parser — - ®cContent()

— . N :g;etAnributeNam es()
= ddAttribute()
| Strarser| %.ddAttribute ()
| [s etAttribute ()
—{| ®setattribute()
-7 Srem oveAttribute()
- By etAttribute ()
BgetName()
SisEmpty()
o String()
o String()
EFcloneObject()

s
s (from parser)
P

. Wdeparse()
Woarse()

7 ®|canParse()

L ®getParserType() XMLContentHandler
ParserException (from xml)
(from parser)

Figure 31 - Parser Factory Class Relationships

Content Object

The Content object provides an abstract one to many attribute-value mapping, enabling the semantics
of adocument (e.g. a message, or its content) to be represented through an “ entity-attribute(s)-val ue(s)”
relationship, which can be of atree like form due to the ability to nest Content objects within one
another.

Parser Interface
The Parser interface provides a number of methods that all parsers are required to implement:

e public Content parse(String docunent)
Attempts to parse the given “document” into ageneralised form (i.e. Cont ent objects).

e public String deparse(Content docunent)
Attempts to de-parse the given Cont ent object into a language specific form (determined by
the Par ser implementation).

* public boolean canParse(String documnent)
Indicatesif the Par ser implementation can deal with the given “document”.

e public String getParserType()
Returns the type of the Par ser implementation (e.g. RDF, XML, SL etc...).

FIPA-OS Developers Guide

35

From thisinterface, it isintended that eventually an Agent could automatically select an appropriate
parser automatically to deal with parsing and deparsing of messages.

Data Binding
With the version 1.4.0 release of the platform, FIPA-OS now includes support for a new technology
called data binding.

Data binding is the process of converting back and forth between a runtime object and a representation
of that object that can be stored persistently or sent as part of a message. It is not tied to any
programming language or to any constraint and instance document formats.

In the 1.4.0 release of FIPA-OS, support has been added for converting between Java objects and their
representation in XML, the eXtensible Markup Language. Thiswork is focused around the agent
profile system. Agent profiles are stored persistently as XML instance documents and are unmarshalled
(converted from document form into objects) into runtime profile objects for system configuration.

Data binding starts with a schema document, in this case, an XML schema. The XML schema defines
the form of one or more instance documents. The schema undergoes a process known as schema
mapping, which statically generates programming language structures that represent the instance
documents, in this case, Java Class and Interface definitions.

The objects that instantiate the generated Class definitions are known as data binding compatible
objects and can be marshalled and unmarshalled to and from instance documents. This process relies
on the Java reflection mechanism to invoke accessor and mutator methods on the data binding objects.
The class definitions for objects that will be created through unmarshalling must be in the VM
classpath before the unmarshalling is attempted.

In the example below, a fragment of an XML schemathat defines a RemoteAgentPlatformProfile
structure is shown along with the Java Interface and Class definitions that are created during the
schema mapping process.

<I--
khhkkkhhhkkhkhhkkhhhhkhhhkkhhhhhhhkhdhhhdhdxkddhhdhdxddhhkdhdxddhxdkdhxkddhx*xddx*d*x*x%

A Renote Agent Platform Profile

LR R R R R R R I S I R R I R I O I

-->

<conpl exType nane="Renot eAgent Pl atfornProfile"
enhydr a: package="fi paos. agent. profil e">
<conpl exCont ent >
<ext ensi on base="enhydra: Profile">
<sequence>
<el enent name="addr essesLocati on"
type="string" />
<el enent name="HAPNane" type="string" />
</ sequence>
</ ext ensi on>
</ conpl exCont ent >
</ conpl exType>

The generated I nterface definition:

package fipaos. agent.profile;

public interface RenoteAgentPlatfornmProfile extends Profile {
public void set AddressesLocation (String addressesLocati on);
public String get AddressesLocation ();
public void set HAPNane (String HAPNane);

FIPA-OS Developers Guide

36

public String get HAPNane ();
}

The generated Class definition:
package fipaos. agent.profile;

public class RenoteAgent Pl atfornProfil el npl extends Profil el npl
i mpl enents RenoteAgent Pl atfornProfile {
private String addressesLocati on;
private String HAPNane;

public RenoteAgentPlatfornProfilelnml () {
super () ;
}

public void set AddressesLocation (String addressesLocation) ({
thi s. addresseslLocati on = addresseslLocati on;
}

public String get AddressesLocation () {
return addresseslLocati on;
}

public void set HAPNane (String HAPNane) {
t hi s. HAPNane = HAPNane;
}

public String get HAPNane () {
return HAPNane;
}

}
A fragment from an XML instance document containing this object would resemble:

<r enot eAgent Pl at f or mPr of i | e hAPNane="hone. fi pa- net. org"
addr essesLocation="http://ww. fi pa-net.org/pl atform addresses” />

The FIPA-OS configuration tool has been updated to make use of data binding techniquesto load,
manipulate, and save the new XML versions of the FIPA-OS profiles.

Enhydra Project

FIPA-OS uses prototype data binding code released by the Enhydra project (http://www.enhydra.org)
under open-source. The data binding code has now become part of a new Enhydra project called Zeus
(http://zeus.enhydra.org). The FIPA-OS development team intends to track the Zeus project and make
use of the latest developments in open source data binding.

The FIPA-OS devel opment team gratefully acknowl edges the Enhydra project for their data binding
work.

JessAgent Shell

The JessAgent shell provides an interface to the Java Expert System Shell (JESS) [14] so that an agent
can use a knowledge base to reason. In thisway it is hoped that the developers can write their own
FIPA-OS Intelligent Agents. JessAgent is not a stand-alone agent —i.e. there will never be an agent
running called JessAgent. An agent must extend the JessAgent classto get access to the JESS
functionality. Since JessAgent extendsthe FI PAOSAgent it will give to the extending agent all
the normal agent functionalities and additional JESS functionality.

FIPA-OS Developers Guide

http://www.enhydra.org/
http://zeus.enhydra.org/

37

FactorialAgent

JessAgent By #®getNewConversation()
EEDEBUG : int =DIAGN OSTICS.LEVEL_MAX _— |notify()
|notify()

e ssAgent() WsetMessageSender()
F®reset(%sendNotUnderstood()
F¥clearkB() ¥registeredWith()
#®runEngine() W ¥registeredWithAMS ()

®is tActvations ()

#®add Template()

#®add Facts()

P¥asser()

@ ®ass ertString()
@®engineExecuteCom mand ()
@®getGlobal Context()

FIPAOSAgent
(fom agent)
IDLE : String = "IDLE"
| ready_to_accept:boolean
| push_lock : Object = new Object ()
| owner : String
& _state : String = "unknown"

(from tutorial) #E:Eﬁg:ﬁgemg
gent
WractorialAgent() :fFlPAOdS(A)gent()
%runEngineCycle orwars
‘main()g yele0 WwaitForPushLock()
s hutdown()

B|getOwnership()
BgetProfile()
BgetAID()
WgetHAP()

@ getCurrentConversation()
WgetLocalAMS()
WgetLocalAMSAID()
WgetLocalDF()
®WgetLocalDFAID()
WgetState()

@®setListenerTask()

@@ startPushing()

@®addNewProtocol()

#®knowsProtocol()

W®registeredWithDF()
F®registerWithAMS()
F®registerWithAMS()
F®registerWithAMS()
% registerWithDF()
F®registerWithDF()
% registerWithDF()
F®registerWithDF()
|registrationFailed()
|registrationRefused()
|registrationSucceeded()
BgetGUID()
WsetGUID()
®main()

Figure 32 — JessAgent and FactorialAgent Class Relationships

The Figure 32 shows the class rel ationships between the super class FI PACSAgent and the
JessAgent , alsoin the picture the tutorial agent Fact or i al Agent —actual application agent —is
shown. More information about the Fact or i al Agent can befound in tutorial document ‘ Step Five
— Extending JessAgent — Factorial Agent’.

JESS atool for building atype of intelligent software called Expert Systems. An Expert System is a set
of rulesthat can be repeatedly applied to a collection of facts about the world — rules that apply are
executed (fired). JESS uses a special algorithm called Rete® to match the rules to the facts, which is
much faster than simple if-then statementsin aloop. Developers wanting to use JessAgent should
be familiar with JESS language, since the expert system iswritten using it.

® In the Rete algorithm, the inefficiencies of traditional expert system algorithms are alleviated by
remembering past test results across iterations of the rule loop. Only new facts are tested against any
rule LHSs. Additionally new facts are tested against only the rule LHSs to which they are most likely
to be relevant. As aresult, the computational complexity per iteration drops.

FIPA-OS Developers Guide

38

The JessAgent has oneinstance of the JESS Rete Engine — this means that for each instance of the
JessAgent thereisonly one reasoning engine, and therefore all the rules and the facts fed in to the
engine will always apply unless the engineis cleared. It is not possible at the moment to have more
than one Rete engine in one agent.

JESS rules and other data are typically entered into a separate script file and read it into JESS using the
batch command. Jess does offers also commands like ‘ ppdefrule’ and ‘ save-facts', both of which can
be very helpful in interactively building up a system definition and then storing it in afile. See tutorial
document ‘ Step Five — Extending JessAgent — Factorial Agent’ or JESS documentation [14] for
examples of JESS scripts.

Methods

Constructor of the JessAgent sets up the agent functionality, creates a new Rete object, and removes
JESS' output router so that we don't get any output printed from JESS. Below is alist of the methods
that are provided by the JessAgent to the agent extending it.

e protected void reset ()
Resets the engine, which means that all the facts and all activations are removed from the
engine, and then all the facts found in deffacts are asserted.

e protected void clearKB()
Clears the knowledge base, which means that all the rules, deffacts, defclobals, deftemplates,
facts, activations and the like are deleted.

e protected String runEngine()
Runs the JESS knowledge base returning the output obtained from the engine.

e protected Enuneration |istActivations()
Returns all the activations currently in the Rete engine.

e protected synchroni zed bool ean addTenpl at e(Deft enpl ate
tenpl at e)
AddsaDeft enpl at e object to the Rete engine, returning a boolean indicating whether the
operation was successful.

« protected synchroni zed bool ean addFacts(Deffacts facts)
AddsaDef f act s object to the Rete engine, returning a boolean indicating whether the
operation was successful.

e protected synchroni zed bool ean assert(Fact fact)
AssertsaFact object to the Rete engine, returning a bool ean indicating whether the
operation was successful.

e protected synchroni zed bool ean assertString(String fact)
AssertsaFact asastring to the Rete engine, returning a bool ean indicating whether the
operation was successful.

» protected synchroni zed Val ue engi neExecut eCormand(Stri ng
content) throws JessException
Executes any JESS command returning a VVal ue object containing the output of the
execution. |f something goes wrong while executing the command, this method throws a
JessExcept i on. Usethis method for running most commands to JESS (excluding adding
templates and facts).

FIPA-OS Developers Guide

39

e protected synchroni zed Context getd obal Context ()
Returns the Rete engine’' s global Cont ext . Global Cont ext isused to determine the type
of the value objects returned by engine execution.

Inner class

JessAgent hasoneinner class: Package implements the jess.Userpackage interface. This class
loads a number of additional packages to the JESS Engine. Presently all packages are loaded, but the
class alows for the possibility of including methods and constructors for loading combinations of
packages.

FIPA CCL (Choice Constraint Language)

FIPA-CCL isthe FIPA approved Content language for communicating Constraint Satisfaction
Problems. CCL is designed as alanguage to be used for agent communication that directly supports the
expression of choice and choice problemsin the content of agent messages.

The code included in FIPA-OS conformsto version 2.0.1 of the Constraint Choice Language (CCL).
Thisisthe version of CCL that has been adopted by FIPA as the standard FIPA compliant content
language named FIPA-CCL. This specification may be downloaded from the CCL Website [7].

Constraint Choice Problems and the field of Constraint Satisfaction Problemsinvolve representing
problems as combinations of allowed values that may be solved to obtain solutions. Typically these
combinations of allowed values will be represented as Constraints saying what values variables may
take simultaneously. A solution is found when all variables can be assigned a value without
contradicting any of the stated Constraints.

Typical problems that may be modelled and solved using Constraint Satisfaction Techniques are
resource allocation problems and tasks involving task scheduling.

Code included
Code isprovided in FIPA-OS for supporting a subset of the objects described in the FIPA-CCL
specification. Using this code CSP problems can be proposed and sol utions returned.

The following Java objects refer to objects in the FIPA-CCL specification that are supported. These
are:

fi paos.skill.constraint.ccl.constraint.CSPRel ati on

fi paos.skill.constraint.ccl.object.CSP

fi paos.skill.constraint.ccl.object.CSPSol ution

fi paos.skill.constraint.ccl.variabl e. CSPRange

fi paos.skill.constraint.ccl.variabl e. CSPval ue
fipaos.skill.constraint.ccl.variable.CSPVvariabl e

fi paos.skill.constraint.ccl.variable. CSPVari abl eAssi gnnment
fi paos.skill.constraint.ccl.variable.lndexPair

All the objects in the FIPA-CCL have code to represent them, however only those described above
have been fully implemented. These objects have methods that allow access to obtain and set their
variables. They also have methods that allow them to be converted to and from Content objects.

The following two classes are used to represent some of the sets of values that may be held in CCL
Messages.

fi paos.skill.constraint.ccl.variable.List
fi paos.skill.constraint.ccl.variable. Tuple

Finally the CCLMessage class allows Constraint problems represented using the above classes to be
converted to and from text messages.

fi paos.skill.constraint.nessage. CCLMessage

FIPA-OS Developers Guide

40

Future Work

Parser Factory
Thereis still much research to be done to enable transparent content language translation.

FIPA-OS Developers Guide

41

Bibliography

(1]

(2]

(3]

(4]

(5]

6]

(8]

(9]

FIPA Agent Management Specification (XC00023G), August 2000
http://www.fipa.org/specs/fipa00023/X C00023G.doc

FIPA SL Content Language Specification (XC00008F), August 2000
http://www.fipa.org/specs/fipa00008/X CO0008F.doc

FIPA ACL Message Structure Specification (XC00061D), August 2000
http://www.fipa.org/specs/fipa00061/X C00061D.doc

FIPA Agent Message Transport Service Specification (XC00067C), July 2000
http://www.fipa.org/specs/fipal0067/X C00067C.doc

FIPA Agent Message Transport Protocol for I1OP Specification (XC00075D), October 2000
http://www.fipa.org/specs/fipa00075/X CO0075D.doc

FIPA ACL Message Representation in String Specification (XC00070F), October 2000
http://www.fi pa.org/specs/fipa00070/X C00070F.doc

CCL Home Page
http://liawww.epfl.ch/~willmott/CCL/

FIPA-OS Inter-platform Communication Configuration Guide
http://fi pa-os.sourceforge.net/docsy/ I nterplatform Configuration Guide.pdf

FIPA-OS SourceForge Home Page
http://fipa-os.sourceforge.net/

[10] FIPA-OS SourceForge Development Home Page

http://sourceforge.net/proj ects/fipa-os/

[11] FIPA Website

http://www.fipa.org/

[12] XML Specifications

http://www.w3.org/ XML/

[13] RDF Specifications

http://mww.w3.org/RDF/

[14] JESS Home Page

http://herzberg.ca.sandia.gov/jess/

FIPA-OS Developers Guide

http://www.fipa.org/specs/fipa00023/XC00023G.doc
http://www.fipa.org/specs/fipa00008/XC00008F.doc
http://www.fipa.org/specs/fipa00061/XC00061D.doc
http://www.fipa.org/specs/fipa00067/XC00067C.doc
http://www.fipa.org/specs/fipa00075/XC00075D.doc
http://www.fipa.org/specs/fipa00070/XC00070F.doc
http://liawww.epfl.ch/~willmott/CCL/
http://fipa-os.sourceforge.net/docs/Interplatform_Configuration_Guide.pdf
http://fipa-os.sourceforge.net/
http://sourceforge.net/projects/fipa-os/
http://www.fipa.org/
http://www.w3.org/XML/
http://www.w3.org/RDF/
http://www.w3.org/RDF/

