

FIPA-OS Developers Guide

Open Source Copyright Notice and License: FIPA-OS

1. The programs and other works made available to you in these files ("the Programs") are Copyright (c) 1999 - 2000 Nortel

Networks Corporation, 8200 Dixie Road, Suite 100, Brampton, Ontario, Canada L6R 5P6. All rights reserved.

2. Your rights to copy, distribute and modify the Programs are as set out in the Nortel Networks FIPA-OS Public License, a

copy of which can be found in file "Nortel_FIPA_OS_Public_Licence.txt" and the latest version can also be found at
http://fipa-os.sourceforge.net/. By downloading the files containing the Programs you accept the terms and conditions of the
Public License. You do not have to accept these terms and conditions, but unless you do so you have no rights to use the
Programs.

The Original Code is Nortel Networks' FIPA-OS (Foundation for Intelligent Physical Agents - Open Source).

The Initial Developer of the Original Code is Nortel Networks Corporation. Portions created by Nortel Networks Corporation or

its subsidiaries are Copyright (c) 1999 - 2000 Nortel Networks Corporation. All Rights Reserved.

Contributor(s):

Emorphia agree to provide Modifications to Nortel Networks' FIPA-OS Covered Code under Nortel Networks' FIPA-OS
Public License. All Emorphia's Modifications remain Copyright (c) 2001 Emorphia Limited. All Rights Reserved.

FIPA-OS Developers Guide

ii

FIPA-OS Developers Guide

Publication History
18 October 2000

First release.

2 February 2001
Updated to include details of the XML-specific databinding code

iii

FIPA-OS Developers Guide

Table of Contents

About this document ..v
What is this document?...v
Intended Audience ..v
Reading Guide ..v
Conventions used ..v
Terminology..v

FIPA-OS Overview ..6
High-level Architecture ..6

Core Components ...7
Non-Component Core Classes ..7

fipaos.ont.fipa.ACL ..7
fipaos.ont.fipa.fipaman.Envelope ...7
fipaos.mts.Message ...8
fipaos.util.DIAGNOSTICS...8

Agent Shell (FIPAOSAgent) ..8
Composition of an Agent ..8
Functionality Provided by the Agent Shell ...10

TM (Task Manager)..11
Composition of the TM...12
Task Events...13
Task Manager Listener ...14
Starting a Task ..15
Parent-Task and Child-Task Communication...16
Task Messaging ..17
Other Useful Task API Methods & Fields..18

CM (Conversation Manager) ..19
Composition of the CM ..20
Protocol Definition ...21
Messaging ...22

MTS (Message Transport Service) ...23
Composition of the MTS ..23
Services...25
Pre-Parser Services ...25
Post-Parser Services..25
Parser Service ...25
Pre-Built Services ...26
MTP’s (Message Transport Protocols) ...27
MTPBase Class...28
Internal MTP’s..29
External MTP’s...30

Bundled MTP Implementations ..32
RMI...32
IIOP ..32

Database Factory...32
NoDatabase...33
MemoryDatabase ..33
SerialisationDatabase..33

Future Work..33
Improved Profiles ...33
Planner Scheduler ...33
Agent Component Monitoring..33

iv

FIPA-OS Developers Guide

Optional Components ..34
Parser Factory ...34

Content Object ..34
Parser Interface ...34

JessAgent Shell ...36
Methods ..38
Inner class ...39

FIPA CCL (Choice Constraint Language) ..39
Code included ...39

Future Work..40
Parser Factory ...40

Bibliography ...41

v

FIPA-OS Developers Guide

About this document

What is this document?
This document attempts to explain the architecture of the FIPA-OS platform to enable FIPA-OS
developers to update and expand the functionality of FIPA-OS by providing an understanding of its
design. This document is based upon the FIPA-OS v1.3.2 distribution, available via our website [9].

Intended Audience
This document is intended for anyone attempting to incorporate new functionality or modify existing
functionality into the FIPA-OS platform.

Reading Guide
It is strongly recommended that the reader should look at the FIPA-OS web site at http://fipa-
os.sourceforge.net/ to understand the rationale behind this platform and for information on future
updates.

Developers using FIPA-OS are encouraged to provide extensions, bug fixes and feedback to help
improve the planned future releases. All such input should be contributed to the Open Source project
via the SourceForge site at http://sourceforge.net/projects/fipa-os/. You are required to register as a
developer to access some of the services at the SourceForge site. General issues and thoughts can be
discussed via the FIPA-OS mailing list on fipa-os-developers@lists.sourceforge.net although you must
register at http://lists.sourceforge.net/mailman/listinfo/fipa-os-developers on this list before you can
send and receive messages. An archive of the messages sent to this list can also be viewed from
http://www.geocrawler.com/redir-sf.php3?list=fipa-os-developers. Should you experience difficulties
using this list, then please contact the FIPA-OS co-ordinators at fipaos@emorphia.com. Please consult
the FIPA_OS_Public_Licence.txt file for further details on the requirements for using, extending and
evolving FIPA-OS.

Conventions used
Within the text filenames appear in italics. In examples where users should enter data, the suggested
data appears in bold. For examples of entering data at the command prompt, variables are encapsulated
in < and > and optional data is encapsulated in [and], e.g. [<comms-transport>] is an optional
parameter which can be specified at the command prompt.

Terminology
ACL Agent Communication Language [3]
AID Agent Identifier [1]
API Application Programming Interface
CCL Choice Constraint Language [7]
FIPA Foundation for Intelligent Physical Agents [11]
HAP Home Agent Platform [1]
MTP Message Transport Protocol [4]
MTS Message Transport Service [4]
RDF Resource Definition Framework [13]
SL Semantic Language [2]
XML extensible Markup Language [12]

http://fipa-os.sourceforge.net/
http://fipa-os.sourceforge.net/
http://sourceforge.net/project/?group_id=3819
mailto:fipa-os-developers@lists.sourceforge.net
http://lists.sourceforge.net/mailman/listinfo/fipa-os-developers
http://www.geocrawler.com/redir-sf.php3?list=fipa-os-developers
mailto:fipaos@emorphia.com

6

FIPA-OS Developers Guide

Chapter 1
FIPA-OS Overview

High-level Architecture
FIPA-OS is a component-orientated toolkit for constructing FIPA compliant Agents using mandatory
components (i.e. components required by ALL FIPA-OS Agents to execute), components with
switchable implementations, and optional components (i.e. components that a FIPA-OS Agent can
optionally use). Figure 1 highlights the available components and there relationship with each other
(NOTE: The Planner Scheduler is not currently available).

Conversation Manager

Task Manager

Message Transport Service

Pl
an

ne
r S

ch
ed

ul
er

Agent Implementation

Agent Shell

JESS Agent Shell

Message Transport Protocols D
at

ab
as

e
Fa

ct
or

y

KEY

Mandatory
Component
Switchable
Implementation
Optional
Component

Pa
rs

er
 F

ac
to

ry

C
ho

ic
e

C
on

st
ra

in
t L

an
gu

ag
e

D
at

ab
as

e'
s

Pa
rs

er
's

Figure 1 - Components within FIPA-OS

The Database Factory, Parser Factory and CCL components are optional and do not have an explicit
relationship with the other components within the tool-kit. The Planner Scheduler generally has the
ability to interact with all components of an Agent, although not necessarily vice versa.

The switchable implementations included as part of the FIPA-OS distribution for each component
include:

• MTP’s

o RMI (proprietary)
o IIOP (FIPA compliant [5])

• Database’s

o MemoryDatabase
o SerializationDatabase

• Parser’s

o SL
o ACL
o XML
o RDF

Chapter 2 details the mandatory components of the FIPA-OS platform.

Chapter 3 details the optional components of the FIPA-OS platform.

7

FIPA-OS Developers Guide

Chapter 2
Core Components

Non-Component Core Classes
This section aims to briefly look at the classes that any non-trivial Agent implementation will make use
of, but are not necessarily part of any particular component.

fipaos.ont.fipa.ACL
This class represents the abstract notion of an ACL message within the FIPA ACL specifications [3].
By default it supports parsing and deparsing of the FIPA standard string encoding for ACL [6],
although this is for historical reasons (ideally the parsing/deparsing of stringified representations of
objects should be independent of the objects containing that information – this provides scope for
multiple content language representations to be considered for a particular class).

In versions of FIPA-OS prior to v1.3.0, the ACLMessage class was used for the same purpose – the
ACL class was introduced due to the changes between FIPA97/98 specifications and FIPA2000, and
the introduction of better typing (i.e. ACLMessage uses String’s to represent GUID’s/AID’s, whereas
the ACL class requires concrete AgentID objects). In order to ensure a degree of backward
compatibility, the ACLMessage class is still currently bundled with FIPA-OS, although it simply
wraps the ACL class (see Figure 2).

ACL

ACL ()
ACL ()
ACL ()
a ddRecei verAID()
a ddReplyToAID()
b yteLengthDecode ()
b yteLengthEncod e()
g etContentObject()
g etConvers ati onID()
g etInR epl yTo()
g etLa nguage()
g etOntol ogy()
g etPer form ative()
g etProtocol ()
g etReceiverAID s()
g etReplyByUTC()
g etReplyToAIDs ()
g etReplyWi th()
g etSen derAID ()
s etContentObject()
s etConvers ati onID()
s etInR epl yTo()
s etLa nguage()
s etOntol ogy()
s etPer form ative()
s etProtocol ()
s etReceiverAID ()
s etReceiverAID s()
s etReplyByUTC()
s etReplyToAIDs ()
s etReplyWi th()
s etSen derAID ()
s tr ing LiteralDecode()
s tr ing LiteralEncode()
toStri ng()

(from fipa)

ACLMes sage

ACLMessage()
ACLMessage()
copy()
getCo nten t()
getEnvelope()
getMe ssageType()
getRe ceiver()
getRe plyBy()
getRe plyTo()
getSender()
setCo nten t()
setCo nten t()
setEnvelope()
setMe ssageType()
setRe ceiver()
setRe plyBy()
setRe plyTo()
setSender()

(f rom a cl)

Figure 2 - ACL & ACLMessage Objects

fipaos.ont.fipa.fipaman.Envelope
This class provides an abstract representation of the FIPA defined Envelope from the MTS
specification [4]. An Envelope object by default provides access to the last assigned values of each

8

FIPA-OS Developers Guide

of its parameters. Changes made to the Envelope by each ACC can be inspected by using the
getSubEnvelopes() method it provides, which returns a List of Envelope objects.

fipaos.mts.Message
The Message class is a convenience class that contains references to an Envelope and ACL object,
the two components that make up a message within the MTS (Message Transport Service).

fipaos.util.DIAGNOSTICS
This class provides a standardised API for printing debugging messages to screen and to a file,
allowing levels to be assigned to each message. This enables the level of detail in debugging messages
displayed/recorded to be controlled at runtime.

The static println() methods defined by this class are the recommended mechanism for displaying
debugging information for the following reasons:

• Controllable level of detail on a per-message basis (as mentioned above)

• All debugging information can be logged to a file, at a different detail level to that displayed
on-screen

• Display/writing of debug messages is completely decoupled from code calling println()
methods via a buffer, increasing application speed compared to System.out.println(),
which blocks until the text is displayed on some operating systems (notably Windows).

Agent Shell (FIPAOSAgent)
The FIPAOSAgent class provides a shell for Agent implementation to use by simply extending this
class.

Composition of an Agent
The FIPAOSAgent shell is responsible for loading an Agent’s profile, and initialising the other
components of which the Agent is composed.

It creates these mandatory components in this order initially:

• MTS

• Task Manager

• Conversation Manager

At initialisation of the Conversation Manager, references to the MTS and Task Manager are passed to
enable them to be dynamically bound to the CM. This is all achieved via the listener interfaces
implemented by the various components, so these components are not explicitly dependant on each
other. Figure 3 highlights the relationships between the classes of these core components, and the
interfaces used to remove inter-component dependence.

9

FIPA-OS Developers Guide

Con versationLis tener

notify()
notify()

setMessageSender()

(f rom conv ersation)

ConversationManager
(from conversation)

-_conversation_lis tener

MessageSender

sendMessage()
setMessageReceiver()

shutdown()

(f rom mts)

-_sender

TaskManager
(from task)

-_ms

FIPAOSAgent
(f ro m a gent)

-_cm
#_tm

MessageReceiver

receiveMessage()
setMessageSend er()

(f rom mts)

MTS
(f rom mts)

-_mts

-_m r

Figure 3 - Core Component Relationships within FIPAOSAgent / Agent Shell

New core components could simply be added by implementing the required interfaces and passing
references to the new class at construction-time to the existing components. As can be seen, the
interfaces defined are also inter-related since they allow registration of other listener interfaces with
implementation objects:

• ConversationListener – Implementing classes are generally interested with receiving
Conversation object updates from another object. Provides a method to register a
MessageSender with the underlying implementation, providing a dynamic mechanism for
binding a component that can send messages.

• MessageReceiver – Implementing classes are interesting in receiving “raw” messages
one at a time. Provides a method to register a MessageSender with the underlying
implementation also.

• MessageSender – Implementing classes provide a direct or indirect (i.e. they pass
messages to another MessageSender implementation) mechanism for sending ACL
messages. Provides a method to register a MessageReceiver with the underlying
implementation, providing a dynamic mechanism for binding a component that should receive
incoming messages.

This provides a flexible mechanism to allow the core-components to register with one another once
they have been constructed, without encountering the “chicken-and-egg” problem of which component
should be constructed first when references to it need to be passed to other components and vice versa.
Each component has an implicit reference to the FIPAOSAgent class to which they belong.

10

FIPA-OS Developers Guide

FIPAOSAgent

FIPAOSAgent()
FIPAOSAgent()
forward()
getAID()
getCurrentConversation()
getGUID()
getHAP()
getLocalAMS()
getLocalAMSAID()
getLocalDF()
getLocalDFAID()
getNewConversation()
getOwnership()
getPlatform Profile()
getProfile()
getState()
knowsProtocol()
m ain()
notify()
notify()
regis terWithAMS()
regis terWithAMS()
regis terWithAMS()
regis terWithDF()
regis terWithDF()
regis terWithDF()
regis terWithDF()
regis teredWith()
regis teredWithAMS()
regis teredWithDF()
regis trationFailed()
regis trationRefused()
regis trationSucceeded()
sendNotUnders tood()
sendNotUnders tood()
setGUID()
setLis tenerTask()
setMessageSender()
shutdown()
s tartPushing()
waitForPushLock()

(from agent)

AgentImplementation
AgentTask

TaskManager

TaskManager()
appendToExecutionOrder()
getActiveTasks()
m ain()
newTask()
newTask()
newTask()
newTask()
newTask()
notify()
notify()
rem oveTask()
rem oveTask()
run()
setMessageSender()
setTaskManagerLis tener()
shutdown()

(from task)

#_tm

-_owner

Task

Task()
Task()
Task()
DFSearchResults ()
done()
done()
doneDFSearchTa sk()
errorDFSearch Task()
fo rward()
getNewCo nversati on()
getState()
handleOther()
newTask()
newTask()
newTask()
newTask()
newTask()
newTask()
newTask()
newTask()
notify()
searchDF()
searchDF()
searchDF()
searchDF()
searchDF()
sendNotUnders too d()
s tartTask()
tim eoutDFSearchTask()

(from task)

#_owner

#_tm _parent

0..*

-_tasks_set

0..*

Figure 4 - Agent Implementation and Relationship with Agent Shell

Figure 4 highlights how an Agent implementation relates to some of the components of the Agent
Shell.

Generally an Agent consists of a class that extends the FIPAOSAgent class, and a number of Task
implementations that contain the functionality of an Agent.

Functionality Provided by the Agent Shell
The Agent Shell provides the following functionality:

• Sending messages – This is accomplished by using the forward() method in either the
FIPAOSAgent or Task class, depending on where in an Agent implementation the message
is being sent from. In the former case, the outgoing message is always passed to the CM via
its sendMessage() method. See the Task Manager and Conversation Manager sections for
details on how messages are dealt with.

• Retrieving the Agents’ properties (Profiles, AID, state) & Locating platform Agents (DF and
AMS) – numerous methods are provided to access this information from the FIPAOSAgent
class.

11

FIPA-OS Developers Guide

• Registration with platform Agents – The FIPAOSAgent class provides
registerWithAMS() and registerWithDF() methods, as well as the call-back
methods registrationSucceeded(), registrationFailed() and
registrationRefused()which should be overridden.

This functionality is provided by use of the AMSRegistrationTask and
DFRegistrationTask’s1. Figure 5 highlights how the Agent Shell creates a
AMSRegistrationTask to register with the AMS, and a callback is made to indicate the
result of that registration (NOTE: this is only a logical representation of interactions, and
doesn’t reflect the concrete interactions that occur). Reception of incoming messages from the
AMS by the TaskManager is implicit. A similar set of interactions occur when registering
with the DF.

 :
AM SRegistrationTask

 :
FIPAOSAgent

 : TaskManager

newTas k(Tas k)

startTask()

AMSRegistrationTask(Callback)

 : Callback

forward(ACL)

handleAgree(Conversat ion)

handleInform(Conversation)

success(AgentID)
registrat ionSucceeded(String)

done(Object)

Figure 5 – Logical Interactions when Successfully Registering with AMS

• Setting up Task’s – The FIPAOSAgent class provides access to the _tm variable, enabling
direct access to the TaskManager class & its associated newTask() methods. The Task
class provides newTask() methods within its API, which allow access to the same
functionality as provided directly via the TaskManager class.

• Shutting down the Agent – The Agent and its components can be cleanly shutdown by
invoking the shutdown() method in the FIPAOSAgent class. This in-turn invokes the
shutdown() method on all of the components of the Agent.

TM (Task Manager)
The Task Manager provides the ability to split the functionality of an Agent into smaller, disjoint units
of works known as Tasks. The aim is that Task’s are self-contained pieces of code that carry out some
task and (optionally) return a result, have the ability to send and receive messages, and have little or
preferably no dependence on the Agent they are executed within. This provides a number of benefits:

1 These classes are not part of the FIPA-OSv1.3.2 distribution, but are available separately from our
SourceForge CVS repository. (They will be/are bundled with later distributions).

12

FIPA-OS Developers Guide

• Tasks are highly re-usable - they can be used in many Agents without having to re-write the
same code / functionality.

• Easy to debug, since tracking the flow of control is simple (Task’s are completely event-
based) and useful debugging messages help to indicate when task-interactions fail/are
unhandled.

• An Agent can execute multiple Tasks at once – the Task Manager takes care of routing
incoming messages and other events to the right Tasks, rather than using a “cludge” of code
within the Agent itself to decide what to do with a particular message.

• Conversation state is effectively encapsulated within a Task, reducing the manual tracking of
Conversations to a bare minimum.

• Tasks can spawn child-tasks – this enables complex Task’s to be created through simply
utilising simpler Task within them.

Composition of the TM
The TaskManager itself is composed of several parts, depicted in Figure 6.

ConversationLis
tener

(f rom conv ersation)

MessageSe
nder

(f rom mts)

ChildDoneEvent
(f rom event)

TaskState

$ TASK_IDLE : int = 0
$ TASK_EXECUTING : int = 1
$ TASK_READY_TO_START : int = 2
$ TASK_READY_TO_CONTINUE : int = 3

(from task)

Tas k Event
(from event)

0..*

_events

0..*

ChildDoneWithR es ultEven t
(from event)

ChildFailureEvent
(from event)

ChildTimeoutEvent
(from event)

ConversationUpdateEvent
(from event)

Ini tial isedEvent
(from event)

TaskManagerL
is tener

taskEvent()

(f rom task)

DefaultTaskMa nagerListener
(from TaskManager)

TaskManager
(f ro m t ask)

-_m s

-_tm_listener

-_tm

Task
(f rom task)

0..*0..*

-_tasks_set

#_tm

0..1 _parent0..1

_state

0..*0..*

-_children

Figure 6 - TaskManager Class Relationships

The TaskManager class provides the coordination mechanism for Task‘s within an Agent. All
active Task’s are referenced from the _tasks_set of the TaskManager object.

13

FIPA-OS Developers Guide

The TaskManager also has references to a MessageSender to enable sending of messages from
the TaskManager, and implements the ConversationListener interface so that it can be
informed of conversation-updates.

Task Events
The entire Task Manager component is built around event-based processing. Every Task within the
TM has a queue of pending events of type TaskEvent. The TaskManager generally processes
these events in the order they are generated for a particular Task. The TaskEvent’s currently
handled are listed in Table 1, along with the listener methods invoked when they are delivered to a
Task.

TaskEvent Listener Method Description
InitialisedEvent public void

startTask(
)

Indicates that a Task has been initialised
and is ready to start (i.e. its startTask()
method should be invoked – sub-classes
should override this method, which has a
default implementation that does nothing).

ConversationUpdateEvent public void
handleX(
Conversati
on)

Indicates that a new message that is part of a
conversation that the Task is involved in
has been received, and needs to be dealt
with. This will cause a method with the
given signature to be invoked, where X is the
performative of the last message in the
conversation received. If such a method
does not exist within the Task, the
handleOther() method will be invoked,
which has a default implementation that
sends a not-understood in response to the
last message (implicitly ending the
conversation).

ChildDoneEvent public void
doneX(
Task)

Indicates when a child-Task completes.
This will cause a method of the given
signature to be invoked on the Task, where
X is the name of the child-Task (by default
this is the classname of the child-Task). If
no such method exists, a warning message
will be printed at the maximum
DIAGNOSTICS level.

ChildDoneWithResultEvent public void
doneX(
Object)

Indicates when a child-Task completes, and
has produced a result. This causes a method
of the given signature to be invoked in the
same manner as for the
ChildDoneEvent, except the result
object is passed as an argument.

ChildTimeoutEvent public void
timeoutX(
Task)

Indicates that a child-Task timed-out before
it had a chance to complete. This causes a
method of the given signature to be invoked,
where X is the name of the child-Task (by
default this is the classname of the child-
Task). If no such method exists, a warning
message will be printed at the maximum
DIAGNOSTICS level.

ChildFailureEvent public void
errorX(
Task,
Throwable
)

Indicates that a child-Task failed (i.e. threw
an un-caught exception) whilst processing a
TaskEvent for it. This causes a method of
the given signature to be invoked, where X is

14

FIPA-OS Developers Guide

TaskEvent Listener Method Description
the name of the child-Task (by default this
is the classname of the child-Task). If no
such method exists, a warning message will
be printed at the maximum DIAGNOSTICS
level.

Table 1 - TaskManager Event Types

The TaskManager decides when to pass the event to the receiving Task based upon the current state
of the Task (encapsulated by the TaskState class), and the order it is instructed to deal with the
Task’s which have pending events.

Task Manager Listener
In order to support the ability for TaskEvent’s (and therefore the execution of Task’s) to be
scheduled by some external component2, the TaskManager doesn’t directly decide in which order to
deal with Task’s. Figure 7 highlights the interactions between a TaskManager and a
TaskManagerListener when newTask() is invoked.

_tm :
TaskManager

TaskB : Task TaskB._s tate :
TaskState _tm ._tm_lis ten er :

TaskManagerLis tener

TaskA : Task

newTask(Task)
addEvent(Task, TaskEvent)

taskEvent(Task, TaskEvent)

Task()

appendToExecutionOrder(Task)

addEvent(TaskEvent)

dealWi thTask(Tas k, TaskEve nt)

getNextEvent()

getState()

notifyStart()

s ta rtTask()

Figure 7 - newTask() - TaskManager and TaskManagerListener Concrete Interactions

Whenever a new TaskEvent is generated, it is passed to the registered TaskManagerListener.
The particular implementation behind this interface can then instruct the TaskManager in which
order to execute the Task’s it has with pending events (NOTE: It cannot instruct the TaskManager
as to which events to deliver, since we wish to ensure events arrive at a Task in the order they occur

2 For example, the new Planner Scheduler when it is ready for release.

15

FIPA-OS Developers Guide

with regard to that Task). A default implementation of the TaskManagerListener interface is
provided, the DefaultTaskManagerListener class – this simply allows Task’s to be executed
in the order events arrive for those Task’s.

Starting a Task
Whenever a Task is created, it should be registered as a top-level task via a newTask() method of
the TaskManager, or via a newTask() method of another Task. In the later case, the new Task
is registered as a child-Task of the other Task, and thus the _parent field of the new Task
references the other Task, and the _children Set of the other Task contains a reference to the new
Task.

NOTE: The TaskManager initialises a number of instance variables in the Task when
newTask() is invoked – the behaviour of methods defined by the Task class are only defined
AFTER the newTask() method has returned, hence code in the Task’s constructor should
NOT utilise any methods from the Task API.

SomeAgent :
FIP AOSAgent

SomeTask :
Task

SomeAgent._tm :
TaskManager

Som eTask._s tate :
TaskState

Task()

newTask(Task)

addEvent(Task, TaskEve nt)

addEvent(TaskEvent)

checkState()

getState()

getNextEvent()

dea lWithTas k(Ta sk, Tas kEvent)

notifyStart()

s tartTask()

Figure 8 - FIPAOSAgent / Task / TaskManager newTask() Concrete Interactions

As shown in Figure 8, once a Task has been initialised, from a Agent developers point of view the
startTask() method will be invoked – it is advisable given the above to start any processing for the
action to be carried out to occur within this method. To enable this to happen, an
InitialisedEvent is generated and added to the queue of TaskEvent’s within the Task’s
TaskState object. When the TaskManager eventually comes to deal with this TaskEvent, the
startTask() method is invoked on the Task.

There are also a number of alternative ways to use newTask() to start a Task. Other than the ability
to relate a conversation with a Task, a time-out can be specified for a Task, at which point its parent-
Task will be informed. Figure 9 highlights the interactions between the parent-Task,
TaskManager and child-Task when a Task is started with a timeout, and that timeout is reached.

16

FIPA-OS Developers Guide

TaskA : Task TaskB : TaskTaskA._state :
TaskState

TaskB._state :
TaskState

 : TaskManager

Task()

newTask(Task, long)

newTask(Task, long, Task)
addEvent(Task, TaskEvent)

addEvent(TaskEvent)

checkState()

getState()

getNextEvent()

dealWithTask(Task, TaskEvent)

notifyStart()

startTask()

startTimeout()

checkState()

getNextEvent()

getState()

dealWithTask(Task, TaskEvent)

notifyTimeout(Task)

timeoutTaskB(Task)

addEvent(Task, TaskEvent)

removeTask(Task)

Figure 9 – Task / TaskManager Concrete Interactions when Timeouts Occur

Parent-Task and Child-Task Communication
In order for Task’s to be able to interact together, a number of simple communication events have
been produced for use within the TaskManager. As described previously, these events allow a
parent-Task to be informed when one of its child-Tasks completes, times-out or fails. The aim is that
these simple events provide the basis for allowing Task’s to interact together without creating explicit
dependencies between them.

Figure 10 highlights the logical interactions between a number of parent/child-Task’s. As described
previously, startTask() is invoked after newTask() has been invoked on a Task, and
doneX() is automatically invoked on the parent after a child-Task invokes either of done() or
done(Object).

17

FIPA-OS Developers Guide

ParentChildTask :
Task

ParentTask : Task

ChildTask : Task

1: s tartTask ()

4: doneParentChildTask(Object)

2: s tartTask()3: doneChildTask(Task)

Figure 10- Multiple Nested Parent / Child Completion Logical Interactions

Task Messaging
Task’s enable multiple conversations to be conducted simultaneously without an explicit need to track
conversation state. As per the FIPAOSAgent class, a forward() method is provided as part of the
Task API to enable Task’s to send messages, and acts as per Figure 11. The TaskManager has a
reference to a MessageSender, to which it passes all outgoing messages via its sendMessage()
method.

TaskA : Task TaskA._tm :
TaskManager

Task A._tm._ms :
MessageSender

forward(ACL)

forward(ACL, Task)
sendMessage(Message)

Figure 11 – Concrete Interactions when Forwarding a Message from a Task

Whenever a Task sends a message, the conversation the message is part of is automatically bound to
that Task (even if no explicit conversation id is provided, the TM ensures one is created) – this
ensures that any subsequent messages received which form part of that conversation are passed to that
Task. Figure 12 highlights the interactions between the TaskManager and a Task when receiving
an incoming message – since the TaskManager implements the ConversationListener
interface, it is notified of conversation updates via the notify() method. The binding between
Task and Conversation can also change – if one Task starts a conversation, another can continue
it by simply sending a message as part of that conversation, or by being initialised using a suitable
newTask() method.

18

FIPA-OS Developers Guide

TaskA._tm._ms :
MessageSender

Tas kA : Task TaskA._tm :
TaskManager

notify(Conversation)

TaskA._state :
TaskState

addEvent(Task, TaskEvent)addEvent(TaskEvent)

checkState()getState()

getNextEvent()

dealWithTask(Task, TaskEvent)
notify(Conversation)

handleX(Conversation)

Figure 12 - Concrete Interactions when TaskManager Receives a Message

In the event that no Task is bound to the conversation of an incoming message, a default Task should
be provided to deal with it (this is achieved by invoking the setListenerTask(Task) method
of FIPAOSAgent) – this is generally only the case with new incoming conversations, hence a new
Task should be spawned to deal with the interactions with the other Agent.

Other Useful Task API Methods & Fields
The Task class also provides a number of other useful methods for use by sub-classes.

• searchDF() – a variety of searchDF() methods are provided to initiate a search on
either a local or remote DF. This is achieved through automated use of the DFSearchTask,
which results in the DFSearchResults(DFAgentDescription[]) method being
invoked on the initiating Task once the DFSearchTask has completed (see Figure 13).
This is achieved through default implementations of doneDFSearchTask() and
errorDFSearchTask() methods in the Task super-class, so care should be taken if these
methods are overridden.

19

FIPA-OS Developers Guide

TaskA : Task DFSearchTask
: Task

searchDF(DFAgentDescription)

DFSearchTas k()

startTask()

forward(ACL)

handleAgree(Conversation)

handleInform(Co nversation)doneDFSearchTask(Object)

DFSearchResults (DFAgentDescription[])

Figure 13 - Logical searchDF() Interactions

• sendNotUnderstood() – provides a convenience mechanism for replying to a message

with a not-understood.

• getNewConversation() – another convenience method for creating a new conversation
which is bound to this Task.

• _tm – reference to the TaskManager that manages the Task.

• _owner – reference to the FIPAOSAgent that owns the Task.

CM (Conversation Manager)
The CM provides the ability to track conversation state at the performative level, as well as
mechanisms for grouping messages of the same conversation together. If a conversation is specified as
following a particular protocol, the CM will ensure that the protocol is being followed by both the
Agent it is part of, and the other Agent involved in the conversation.

20

FIPA-OS Developers Guide

Composition of the CM

ConversationLis tener

noti fy()
noti fy()

setMes sageSender()

(f rom conv ersation)

MessageReceiver

receive Me ssage()
setMes sageSender()

(f rom mts)

MessageSender

sendMessage()
setMessageReceiver()

shutdown()

(f rom mts)

Database

addObject()
c los eDataba se()
cre ateDatabase ()
createRela tion()
deleteDatabase ()
deleteRela tion()
endTransaction()

findObject()
g etIDs ()

op enDatab ase()
rem oveObject()
rem oveObject()

s tartTransaction()
updateObject()

(f rom db)

ConversationManager
(from conversation)

-_conversation_lis tener

-_sender-_databas e

Conversation
(f rom conv ersation)

0..*
-_active_lis t

0..*

FIPAAuctionDutch
(from protocol)

FIPAAuctionEnglish
(from protocol)

FIPABrokering
(from prot ocol)

FIP AContractNet
(f rom prot oco l)

FIPAIteratedContractNet
(from protocol)

FIPAQuery
(f rom protocol)

FIPARecruiting
(f rom p rot oc ol)

FIPARequest
(from protocol)

FIPARequestWhen
(from protocol)

NoProtocol
(f rom protocol)

Figure 14 - Conversation Manager Composition

Figure 14 highlights the key classes that compose the ConversationManager and their
relationships. The ConversationManager implements the MessageReceiver interface so it
can deal with incoming messages, the MessageSender interface to enable other components to send
messages via it, has a reference to a MessageSender implementation to enable it to send messages,
and has a reference to a ConversationListener so that it can pass updated conversations to
components that implement this interface.

Conversation objects represent individual conversations, and encapsulate all of the state
information and messages sent and received as part of that conversation. Hence they perform the
necessary validation of the protocol being used by the conversation, and provide mechanisms for
discovering what messages have been sent/received, and the messages that should be sent next.

The ConversationManager also has a reference to a Database implementation to enable
Conversation objects to be stored once they are no longer active (i.e. when the conversation they
represent has completed). A Map of active Conversation’s is kept by the
ConversationManager, enabling quick look-up upon receipt of a message.

Various specialisations of the Conversation class are provided to enable different protocols to be
supported. Each specialisation simply defines the protocol (in terms of performatives) to be followed
for a particular conversation of that protocol type.

21

FIPA-OS Developers Guide

Protocol Definition
The protocol a particular conversation type follows is defined by specifying a class variable
(__protocol) containing a tree-like structure defining the protocol. This is achieved through
specifying an Object[] for each node in the tree, with details of what performative is expected next
from which Agent in the conversation, what the desired action is (inform the Agent, ignore etc…) and
references to its’ child-nodes.

The standard form of the Object[] for a node is:
{ <String performative> [,<Integer action>], <Integer participant> [,
<Object[] child_node>] }

which can be repeated to represent multiple possibilities at each node, where:

• performative is the performative of the next message to be received.

• action (optional) is the type of currently supported action which should occur when this
message arrives. This is one of:

o AGENT_ACTION_REQUIRED – recipient Agent should be informed of the arrival of
this message

o CONVERSATION_END – this is the end of the conversation (always reported to the
recipient Agent). This value is implicit if a following child_node is not defined
given the arrival of this message.

o NO_AGENT_ACTION_REQUIRED – recipient Agent shouldn’t be informed of the
arrival of this message.

• participant indicates which Agent should send the message (0 is used for the initiator of
a conversation, 1 for the recipient of the first message in the conversation).

• child_node is a reference to another Object[] which should become the current node
when a message of this type is received.

The protocol definition can contain loops (although these will need to be closed using a static
initialiser), and handling of “not-understood” messages is implicit.

Request

Agree Refuse

Inform Failure

KEY

X

Y

Message from
initiator with

performative X

Message from
recipient with

performative Y

Figure 15 - Example Message Protocol

Figure 15 is an example protocol, which could be “encoded” using the following Java code in a
Conversation sub-class:

public static Object[] __ agree = { “inform”, new Integer(1),

“failure”, new Integer(1) };

22

FIPA-OS Developers Guide

public static Object[] __request =
{ “agree”, new Integer(AGENT_ACTION_REQUIRED), new Integer(1), __agree,
“refuse”, new Integer(1) };

public static Object[] __protocol =
{ “request”, new Integer(AGENT_ACTION_REQUIRED), new Integer(0), __request };

Messaging
Figure 16 highlights the interactions involved when the Conversation Manager deals with an incoming
message. It receives the message via the receiveMessage() method of the MessageReceiver
interface it implements, and proceeds to add the message to an existing Conversation object
(which encapsulates the state of a particular conversation), or creates a new one if this is the first
message of a conversation. The fact that the Conversation has been updated is added to a queue
within the Conversation Manager, so that Conversation updates can be dealt with in the order they
occur. In the event that a message cannot be added to a Conversation (perhaps because doing so
would violate the protocol the conversation is following), a not-understood is automatically generated
in response, and the Conversation is brought to an end (the updated Conversation object will
be added to the queue of pending Conversation’s).

Sometime later, a Monitor pulls the updated Conversation from the queue, and passes it to the
Conversation Managers’ registered ConversationListener to be dealt with.

 :
Conve rsa ti on Mana ger :

ConversationListener
 :

Moni torListener

 : Monitor : Queue :
MessageSender

 : Conversation

receiveMessage(Message)

addMessa ge(Mes sage)

handleM essage(M essage)

addItem (Object)

dealWithConversation(Conversation)

getItem ()
moni torUpdate(Object)

noti fy(Conversation)

Figure 16 - Interactions when Receiving a Message

Figure 17 depicts the interactions that occur when a message is being sent via the Conversation
Manager. In this case, the registered ConversationListener invokes the sendMessage()
method (defined in the MessageSender interface, which the CM implements) on the Conversation
Manager. The message is then added to the Conversation it belongs to, or a new one is created if
the message is the start of a new conversation. Assuming this is successful, the message is sent via the
MessageSender implementation registered with the Conversation Manager. In the event that a
problem arises, at present a DIAGNOSTICS message is displayed on screen.

In the future it is hoped more sophisticated error handling mechanisms will be introduced into the
Conversation Manager, such that erroneous messages are passed back to the
ConversationListener to be dealt with.

23

FIPA-OS Developers Guide

 :
MessageSender

 :
ConversationManager

 : Conversation :
ConversationLis tener

sendMessage(Message)

handleMessage(Message)

addMessage(Message)

dealWithConversation(Conversation)

sendMessage(Message)

Figure 17 - Interactions when Sending a Message

MTS (Message Transport Service)
The MTS provides the ability to send and receive messages to an Agent implementation.

Composition of the MTS
The MTS within FIPA-OS is logically split such that incoming and outgoing messages pass through a
number of services within a “service stack” (see Figure 18). Each service is a stand-alone component
that performs some transformation on outgoing messages, and the inverse transformation on incoming
messages. This model is used for the following reasons:

• Ideally each service performs its own function on incoming and outgoing messages – this
enables the functionality of the MTS to be split into distinct decoupled components that can be
individually tested (e.g. routing of messages to the ACC could be once service, whereas
buffering messages could be another). Due to the non-trivial required behaviour of the MTS,
it is logical to break the implementation of the requirements into individual components which
in conjunction meet the overall requirements of the MTS.

• Addition of functionality to the MTS simply requires a new service to be created.

• Extra services can be slotted into the stack at runtime, due to lack of compile-time bindings
between services.

24

FIPA-OS Developers Guide

MTS

Service Stack

MTP's

RMI

Service 1

Service 2

Service 3

Agent

KEY
Incoming
Messages

Outgoing
Messages

HTTP

Figure 18- Logical Composition of the MTS

The MTS class implements the MessageSender interface, through which it provides access to the
stack in use. Upon receipt of an outgoing message, it is immediately pushed into the stack. Whenever
an incoming message is pushed from the top of the stack to the MTS class, it is passed to the
MessageReceiver registered with the MTS – hence outgoing/incoming messages are pushed out
of/in to the MTS instance in use by an Agent. Figure 19 highlights the class relationships for the MTS
class.

MessageSender

sen dMessage()
setMessageReceiver()

shutdown()

(f rom mts)

Message Re cei ver

receiveMessag e()
setMessage Sender()

(f ro m mt s)

MTS
(f rom mts)

-_mr

InternalStack
(f rom M TS)

-this$0

PreParserSer
vice

incom ing()
initialise()
outgoing()

(f rom serv ice)

-_next

Figure 19- MTS Class Relationships

At present the services used in the MTS stack are hard-coded. In the future this will be dynamically
determined based upon the profile of the Agent it belongs to.

25

FIPA-OS Developers Guide

The MTS stack generally has two forms - one for internal transports, and another for external
transports. The internal transports generally deal with a Message object, whereas external transports
deal with an Envelope object and a byte[].

In either case, if a message cannot be sent, it will be propagated back up the stack for either another
service to deal with, or the Agent implementation. This enables services higher up the stack to deal
with error conditions before resorting to passing a message back to the Agent.

Services
Services within the stack implement at bare minimum the Service interface, although in order to
bind services together they must implement either the PreParserService or
PostParserService interfaces that extend the Service interface (see Figure 20). The
ServiceStack class is provided to simplify the process of dynamically binding Service
implementations together using the initialise() method, since it will do this for all services it
contains when its initialise() method is invoked.

Service

shutdown()

(f rom serv ice)

<<Interface>>

PreParserS ervice

incoming()
initialise()
outgoing()

(f rom service)

<<Interface>>
PostParserService

incoming()
initialise()
outgoing()

(f rom service)

<<Interface>>

Figure 20 - Service Interface Relationships

The Service interface also defines a number of failure reasons to be used with the Envelope
getErrorCode()/setErrorCode() methods.

Pre-Parser Services
Services that implement this interface are expected to deal with Message objects, which encapsulate
an Evenlope and an ACL object. In abstract terms, Pre-Parser Services deal with Objects.

Post-Parser Services
Services that implement this interface are expected to deal with messages in the form of an Envelope
and byte[] tuple, where the byte[] represents the content of the envelope (i.e. the ACL message).
In abstract terms, Post-Parser Services deal with “serialised”/”stringified” messages.

Parser Service
The ParserService is a concrete Service implementation – it implements both the
PreParserService and PostParserService interfaces, providing a translation mechanism
between the Object-Orientated Pre-Parser Services, and the flat byte[] representation of Post-Parser
Services (i.e. it takes care of all necessary parsing and de-parsing with regard to incoming and outgoing
messages).

26

FIPA-OS Developers Guide

Service

shutdown()

(f rom serv ice)

PreParserSer
vice

incom ing()
initialise()
outgoing()

(f rom serv ice)

ParserService
(from service)

-_previous

Pos tParserS
ervice

incoming()
initialise()
outgoing()

(f rom serv ice)

-_next

Figure 21 - ParserService Class Relationships

Pre-Built Services
Bundled with FIPA-OS you'll find a number of "general-purpose" service implementations - some
implement both the PreParserService and PostParserService interfaces since they can be
placed anywhere in a stack (although they don't provide a translation mechanism such as the
ParserService – services both below and above these services must implement the same
interface).

• BufferService – This service implements both PreParserService and
PostParserService interfaces (see Figure 22). Its purpose is to decouple services within
a stack by providing a FIFO queue in each direction within the stack between the services.

PreParserSer
vice

incoming()
initialise()
outgoing()

(f rom serv ice)

Pos tParserS
ervice

incom ing()
initialise()
outgoing()

(f rom serv ice)

BufferService
(from service)

Service

shutdown()

(f rom serv ice)

-_t arget s[]

Figure 22 - BufferService Class Relationships

• CommMultiplexService – Provides a mechanism for multiple MTP’s to be joined to the

bottom of a stack, and implements both PreParserService and PostParserService
interfaces (see Figure 23), It provides support for the MTP’s to be used to send messages as
per the FIPA MTS Specification [4] (i.e. attempting to use the MTP’s based upon the order of

27

FIPA-OS Developers Guide

the URL’s within the intended-receivers AID addresses field). In the event that none of the
available MTP’s are able to send the message, it is propagated back up the stack with an
appropriate error number.

PreParserSer
vice

incom ing()
initialise()
outgoing()

(f rom serv ice)

Pos tParserS
ervice

incom ing()
initialise()
outgoing()

(f rom serv ice)

Com m MultiplexService
(from service)

Service

shutdown()

(f rom serv ice)
-_previous

Figure 23 - CommMultiplexorService Class Relationships

• ACCRouterService – This service implements the PreParserService interface only.

Generally it passes outgoing messages straight through, and only takes notice when it receives
an outgoing message that has been bounced back up the stack. In this event (depending on the
reason why it has been bounced) it will be pass back down the stack, indicating that the
message should be forwarded to the ACC in order to be sent. Hence this service routes
messages (where appropriate) to the ACC.

Pos tParserS
ervice

incom ing()
initialise()
outgoing()

(f rom serv ice)

Service

shutdown()

(f rom serv ice)

ACCRouterService
(from preparse)

PreParserSer
vice

incom ing()
initialise()
outgoing()

(f rom serv ice)

-_next

-_prev

Figure 24 - ACCRouterService Class Relationships

MTP’s (Message Transport Protocols)
MTP’s provide the mechanisms for sending and receiving messages from one Agent to another. Figure
25 highlights the relationships between MTP related classes.

28

FIPA-OS Developers Guide

Se rvice

shutdown()

(f rom serv ice)

MTPBase

bind()
lookup()
lookup()
send()
receive()
unbind()
handleIncom ing()
handleOutgoing()
shutdownMTPBase()

(from mts)

ExternalMTP

ge tAddress ()
getProtocols ()

(f rom mts)

InternalMTP

getAddress()
getProtocols()

(f rom mts)

ExternalMTPBase
(from mts)

Pos tParserS
ervice

incoming()
initialise()
outgoing()

(f ro m s erv ice)

-_previous

InternalMTPBase
(f ro m m ts)

PreParserSer
vice

incom ing()
initialise()
outgoing()

(f rom serv ice)

-_previous

RMIComms
(f rom internal)

SUNIIOP Comms
(from external)

Figure 25 - MTP Class Relationships

MTPBase Class
The MTPBase class contains functionality that is common across a number of MTP’s. This includes
handling incoming and outgoing messages, raising appropriate exceptions and error messages and other
general behaviour. The MTPBase class deals with {Envelope, Object} tuples, where the
Envelope determines the behaviour of the MTP, and the Object is the payload of the message.

The InternalMTPBase and ExternalMTPBase classes specialise the MTPBase class to a
particular type of MTP – either internal or external – and simply provides a translation mechanism
between the InternalMTP and ExternalMTP interfaces and the functionality defined by the
MTPBase class (i.e. providing the following translations respectively: Message � {Envelope,
Object} and {Envelope, byte[]} � {Envelope, Object}). An MTP class which extends
either of these classes is required to implement the following methods:

• public fipaos.util.URL getAddress()
A simple mechanism to retrieve the URL’s for this MTP

• public java.util.List getProtocols()
A simple mechanisms to retrieve the URL protocol types that an MTP can deal with

• public void shutdown()
Invoked when the MTP should be permanently shutdown

29

FIPA-OS Developers Guide

• protected void bind()
Invoked when the MTP should startup/bind to a Naming Service

• protected void unbind()
Invoked when the MTP should shutdown/unbind from a Naming Service (perhaps
temporarily)

• protected Object lookup(URL name)
Looks up a MTP specific reference (in the form of the returned Object) to the given URL

• protected Object lookup(String name)
Looks up a MTP specific reference (in the form of the returned Object) to the given Agent
name (of the form agent@hap).

and depending on whether InternalMTPBase or ExternalMTPBase is being extended, respectively
either:

• protected void send(Object target, Message msg)
Send the given message to the given target (the target Object will have been obtained from a
previous call to lookup(), so it can be type-cast to whatever type the implemented
lookup() method returns).

or:

• protected void send(Object target, Envelope env, byte msg[])
Send the given message to the given target (the target Object will have been obtained from a
previous call to lookup(), so it can be type-cast to whatever type the implemented
lookup() method returns).

An MTP implementation does not have to extend these classes, just implement the InternalMTP or
ExternalMTP interfaces in order to be used with FIPA-OS. The advantage to extending a sub-class
of MTPBase class is however that the MTP class simply has to implement a small number of methods
that simply deal with matters directly related to the MTP implementation.

Internal MTP’s
An MTP generally falls into this category if:

• It provides a proprietary transport mechanism

• Aims to provide efficiency rather than inter-operability

• Does not require the message or its envelope to be prepared for its use (i.e. stringified or
serialised in any form)

Internal MTP’s are the main type of transport used by Agents within a platform, assuming that the
majority of communications are intra-platform.

Figure 26 and Figure 27 highlight the interaction involved internally when messages are sent and
received within an InternalMTPBase sub-class.

30

FIPA-OS Developers Guide

 :
PreParserServi

 :
InternalMTPBase

outgoing(Message)
handleOutgo ing(Envelope, Objec t)

bind()

lookup(UR L)

send(Object, Envelope, Object)

send(Object, Me ssage)

unbind()

Figure 26 - Interactions When Sending a Message (incl. binding and unbinding of MTP which

only normally occurs when an Agent starts/stops)

 :
PreParserService

 :
InternalMTPBase

handleIncoming(Message)

handleIncoming(Envelope, Object)

receive(Envelope, Object)

incom ing(Messa ge)

incoming(Message)

Figure 27 - Interactions When Receiving a Message

External MTP’s
An MTP generally falls into this category if:

31

FIPA-OS Developers Guide

• It provides a standardised transport mechanism (i.e. following a particular FIPA specification)

• Aims to provide inter-operability rather than efficiency

• Requires the message is prepared in some form before it is passed to is (i.e. stringified or
serialised in some form).

External MTP’s are currently only used by the ACC (although this will change when MTS profiles are
introduced, allowing individual Agents to make use of external transports).

Figure 28 and Figure 29 highlight the interaction involved internally when messages are sent and
received within an ExternalMTPBase sub-class.

 :
Pos tParserServ

 :
ExternalMTPBase

bind()

outgoing(Envelope, byte[])
handleOutgoing(Envelope, Object)

lookup(URL)

send(Object, Envelope, Object)

send(Object, Envelope, byte[])

unbind()

Figure 28 - Interactions When Sending a Message (incl. binding and unbinding of MTP which

only normally occurs when an Agent starts/stops)

32

FIPA-OS Developers Guide

 :
PostParserService

 :
Externa lMTPBase

handleIncoming(Envelope, byte[])

handleIncoming(Envelope, Object)

receive(Envelo pe, Object)

incoming(Envelope, byte[])
incoming(Envelope, byte[])

Figure 29 - Interactions When Receiving a Message

Bundled MTP Implementations
FIPA-OS currently comes bundled with the following MTP implementations that are specialisations of
the MTPBase class.

RMI
The RMI transport is based upon Sun’s RMI implementation that is part of the core Java 1.1 and Java 2
Standard Edition API. Due to the fact that this transport relies upon the use of Java Serialisation to
encode messages, it is not interoperable with Agents written in languages other than Java. However,
this also means that it is much more efficient for communications between Agents written in Java (i.e.
currently all FIPA-OS Agents). Thus, this transport is an Internal MTP.

IIOP
The IIOP transport is based upon Sun’s CORBA implementation that is part of the Java 2 Standard
Edition API (although it is not a core Java component). It is compliant with the FIPA IIOP MTP
specification [5], and hence is potentially interoperable with an Agent written in any language that
supports CORBA, and this specification. Hence, this transport is an External MTP.

Database Factory
The Database Factory provides a mechanism for instantiating a particular instance of a class that
implements the Database interface. Figure 30 highlights some of the relationships between classes
related to the Database Factory.

Based upon some criteria passed as arguments to the DatabaseFactory class (i.e. the class-name at
present), the DatabaseFactory instantiates an appropriate Database implementation and returns
the reference. The aim is that different types of database can be used transparently by a particular
Agent. The Database interface defines the required semantics of any object implementing that
interface.

The only requirement of objects that can be placed into a Database implementation is that they
implement the DatabaseObject interface, which implies the objects are serialisable.

33

FIPA-OS Developers Guide

DatabaseFac tory

getDatabase()
getDatabase()

(from db)

Databas e

createDatabase()
openDatabase()
closeDatabase()
deleteDatabase()

addObject()
findObject()

updateObject()
rem oveObject()
rem oveObject()
createRelation()
deleteRelation()

s tartTransaction()
endTransaction()

getIDs()

(f rom db)

DatabaseObject

getObjectID()

(f rom db)

0 .. *datab ase_contents 0.. *MemoryDatabase
(f rom memory database)

NoDatabase
(f rom nodatabase)

SerializationDatabase
(f ro m s eria lizatio nd ataba se)

Figure 30 - Database Factory Class Relationships

NoDatabase
This is a dummy Database implementation, providing no storage mechanisms whatsoever for
DatabaseObject’s – all methods either return null or take no action.

MemoryDatabase
This Database implementation is a transient database which loses its contents when the JVM the
Agent it is contained within closes.

SerialisationDatabase
This Database implementation provides a simple persistent database mechanism, which uses Java
serialisation to write individual DatabaseObject’s to files within the host computers file-system.
WARNING: No guarantees about the robustness or scalability of this implementation have been made.

Future Work
This section highlights areas of future work that might be considered.

Improved Profiles
Due to the increasing range of machines FIPA-OS Agents are being deployed onto, it is envisaged that
through improved profile support for core-components and optional components Agents can simply be
adapted through profile modification.

Planner Scheduler
In order for FIPAOS Agents to become more proactive and goal based, a new and improved Planner
Scheduler may be introduced to enable this. The aim is that FIPA-OS Agent development can be
simplified through use of profiles to determine the goals of an Agent, and the Agent will draw upon
Task instances it knows about to achieve those goals (though cooperation with other Agents or
individually).

Agent Component Monitoring
The ability for an Agents state to be monitored might be considered to enable the Planner Scheduler to
become aware of what resources an Agent has available, and how to best re-arrange work to meet
commitments.

This could involve monitoring of the number of pending messages/conversation updates/tasks to be
dealt with, and re-prioritising work based upon the current situation the Agent finds itself in.

34

FIPA-OS Developers Guide

Chapter 3
Optional Components

Parser Factory
The aim of the Parser Factory is to provide automated transparent parsing and deparsing mechanisms
for multiple languages to a language-neutral semantic-maintaining representation. This component is
unfinished, so FIPA-OS does not currently support this functionality at present.

A subset of the required classes for this functionality have been produced however. FIPA-OS includes
a number of parsers that conform to a standard interface and use generic objects to represent the
semantic information within a message (although they still require language/parser specific
information).

Figure 31 highlights some of the key classes within the Parser Factory (note the deliberate absence of a
ParserFactory class).

Parser

deparse()
parse()

canParse()
getParserType()

(f rom parser)

ParserException
(from parser)

Exception
(f ro m l ang) RDFContentHandler

(f rom rdf)

SLParser
(from sl)

XMLContentHandler
(from xml)

Content

Content()
Content()
Content()
Content()
getAttributeNam es()
addAttribute()
addAttribute()
setAttribute()
setAttribute()
rem oveAttribute()
getAttribute()
getNam e()
isEm pty()
toString()
toString()
cloneObject()

(from content)

Figure 31 - Parser Factory Class Relationships

Content Object
The Content object provides an abstract one to many attribute-value mapping, enabling the semantics
of a document (e.g. a message, or its content) to be represented through an “entity-attribute(s)-value(s)”
relationship, which can be of a tree like form due to the ability to nest Content objects within one
another.

Parser Interface
The Parser interface provides a number of methods that all parsers are required to implement:

• public Content parse(String document)
Attempts to parse the given “document” into a generalised form (i.e. Content objects).

• public String deparse(Content document)
Attempts to de-parse the given Content object into a language specific form (determined by
the Parser implementation).

• public boolean canParse(String document)
Indicates if the Parser implementation can deal with the given “document”.

• public String getParserType()
Returns the type of the Parser implementation (e.g. RDF, XML, SL etc…).

35

FIPA-OS Developers Guide

From this interface, it is intended that eventually an Agent could automatically select an appropriate
parser automatically to deal with parsing and deparsing of messages.

Data Binding
With the version 1.4.0 release of the platform, FIPA-OS now includes support for a new technology
called data binding.

Data binding is the process of converting back and forth between a runtime object and a representation
of that object that can be stored persistently or sent as part of a message. It is not tied to any
programming language or to any constraint and instance document formats.

In the 1.4.0 release of FIPA-OS, support has been added for converting between Java objects and their
representation in XML, the eXtensible Markup Language. This work is focused around the agent
profile system. Agent profiles are stored persistently as XML instance documents and are unmarshalled
(converted from document form into objects) into runtime profile objects for system configuration.

Data binding starts with a schema document, in this case, an XML schema. The XML schema defines
the form of one or more instance documents. The schema undergoes a process known as schema
mapping, which statically generates programming language structures that represent the instance
documents, in this case, Java Class and Interface definitions.

The objects that instantiate the generated Class definitions are known as data binding compatible
objects and can be marshalled and unmarshalled to and from instance documents. This process relies
on the Java reflection mechanism to invoke accessor and mutator methods on the data binding objects.
The class definitions for objects that will be created through unmarshalling must be in the JVM
classpath before the unmarshalling is attempted.

In the example below, a fragment of an XML schema that defines a RemoteAgentPlatformProfile
structure is shown along with the Java Interface and Class definitions that are created during the
schema mapping process.

<!--

A Remote Agent Platform Profile

-->

<complexType name="RemoteAgentPlatformProfile"
enhydra:package="fipaos.agent.profile">

<complexContent>
<extension base="enhydra:Profile">

<sequence>
<element name="addressesLocation"

type="string" />
<element name="HAPName" type="string" />

</sequence>
</extension>

</complexContent>
</complexType>

The generated Interface definition:

package fipaos.agent.profile;

public interface RemoteAgentPlatformProfile extends Profile {
public void setAddressesLocation (String addressesLocation);
public String getAddressesLocation ();
public void setHAPName (String HAPName);

36

FIPA-OS Developers Guide

public String getHAPName ();
}

The generated Class definition:

package fipaos.agent.profile;

public class RemoteAgentPlatformProfileImpl extends ProfileImpl
implements RemoteAgentPlatformProfile {

private String addressesLocation;
private String HAPName;

public RemoteAgentPlatformProfileImpl () {
super();

}

public void setAddressesLocation (String addressesLocation) {
this.addressesLocation = addressesLocation;

}

public String getAddressesLocation () {
return addressesLocation;

}

public void setHAPName (String HAPName) {
this.HAPName = HAPName;

}

public String getHAPName () {
return HAPName;

}
}

A fragment from an XML instance document containing this object would resemble:

<remoteAgentPlatformProfile hAPName="home.fipa-net.org"
addressesLocation="http://www.fipa-net.org/platform.addresses" />

The FIPA-OS configuration tool has been updated to make use of data binding techniques to load,
manipulate, and save the new XML versions of the FIPA-OS profiles.

Enhydra Project
FIPA-OS uses prototype data binding code released by the Enhydra project (http://www.enhydra.org)
under open-source. The data binding code has now become part of a new Enhydra project called Zeus
(http://zeus.enhydra.org). The FIPA-OS development team intends to track the Zeus project and make
use of the latest developments in open source data binding.

The FIPA-OS development team gratefully acknowledges the Enhydra project for their data binding
work.

JessAgent Shell
The JessAgent shell provides an interface to the Java Expert System Shell (JESS) [14] so that an agent
can use a knowledge base to reason. In this way it is hoped that the developers can write their own
FIPA-OS Intelligent Agents. JessAgent is not a stand-alone agent – i.e. there will never be an agent
running called JessAgent. An agent must extend the JessAgent class to get access to the JESS
functionality. Since JessAgent extends the FIPAOSAgent it will give to the extending agent all
the normal agent functionalities and additional JESS functionality.

http://www.enhydra.org/
http://zeus.enhydra.org/

37

FIPA-OS Developers Guide

JessAgent
DEBUG : int = DIAGN OSTICS.LEVEL_MAX

Je ssAgent()
reset()
clearKB()
runEngine()
lis tAc tivations ()
add Tem p late()
add Facts()
ass ert()
ass ertString()
eng ineExecuteCom mand ()
getGlobalCo ntext()

FIPAOSAgent

$ IDLE : String = "IDLE"
_ready_to_accept : boolean
_push_lock : Object = new Object ()
_owner : String
_s tate : String = "unknown"

FIPAOSAgent()
FIPAOSAgent()
FIPAOSAgent()
forward()
waitForPushLock()
shutdown()
getOwnership()
getProfile()
getAID()
getHAP()
getCurrentConversation()
getLocalAMS()
getLocalAMSAID()
getLocalDF()
getLocalDFAID()
getState()
setLis tenerTask()
s tartPushing()
addNewProtocol()
knowsProtocol()
getNewConversation()
notify()
notify()
setMessageSender()
sendNotUnders tood()
regis teredWith()
regis teredWithAMS()
regis teredWithDF()
regis terWithAMS()
regis terWithAMS()
regis terWithAMS()
regis terWithDF()
regis terWithDF()
regis terWithDF()
regis terWithDF()
regis trationFailed()
regis trationRefused()
regis trationSucceeded()
getGUID()
setGUID()
m ain()

(f ro m age nt)

FactorialAgent

FactorialAgent()
runEngineCycle()
m ain()

(from tutorial)

Figure 32 – JessAgent and FactorialAgent Class Relationships

The Figure 32 shows the class relationships between the super class FIPAOSAgent and the
JessAgent, also in the picture the tutorial agent FactorialAgent – actual application agent – is
shown. More information about the FactorialAgent can be found in tutorial document ‘Step Five
– Extending JessAgent – FactorialAgent’.

JESS a tool for building a type of intelligent software called Expert Systems. An Expert System is a set
of rules that can be repeatedly applied to a collection of facts about the world – rules that apply are
executed (fired). JESS uses a special algorithm called Rete3 to match the rules to the facts, which is
much faster than simple if-then statements in a loop. Developers wanting to use JessAgent should
be familiar with JESS language, since the expert system is written using it.

3 In the Rete algorithm, the inefficiencies of traditional expert system algorithms are alleviated by
remembering past test results across iterations of the rule loop. Only new facts are tested against any
rule LHSs. Additionally new facts are tested against only the rule LHSs to which they are most likely
to be relevant. As a result, the computational complexity per iteration drops.

38

FIPA-OS Developers Guide

The JessAgent has one instance of the JESS Rete Engine – this means that for each instance of the
JessAgent there is only one reasoning engine, and therefore all the rules and the facts fed in to the
engine will always apply unless the engine is cleared. It is not possible at the moment to have more
than one Rete engine in one agent.

JESS rules and other data are typically entered into a separate script file and read it into JESS using the
batch command. Jess does offers also commands like ‘ppdefrule’ and ‘save-facts’, both of which can
be very helpful in interactively building up a system definition and then storing it in a file. See tutorial
document ‘Step Five – Extending JessAgent – FactorialAgent’ or JESS documentation [14] for
examples of JESS scripts.

Methods
Constructor of the JessAgent sets up the agent functionality, creates a new Rete object, and removes
JESS’ output router so that we don’t get any output printed from JESS. Below is a list of the methods
that are provided by the JessAgent to the agent extending it.

• protected void reset()
Resets the engine, which means that all the facts and all activations are removed from the
engine, and then all the facts found in deffacts are asserted.

• protected void clearKB()

Clears the knowledge base, which means that all the rules, deffacts, defclobals, deftemplates,
facts, activations and the like are deleted.

• protected String runEngine()

Runs the JESS knowledge base returning the output obtained from the engine.

• protected Enumeration listActivations()
Returns all the activations currently in the Rete engine.

• protected synchronized boolean addTemplate(Deftemplate

template)
Adds a Deftemplate object to the Rete engine, returning a boolean indicating whether the
operation was successful.

• protected synchronized boolean addFacts(Deffacts facts)

Adds a Deffacts object to the Rete engine, returning a boolean indicating whether the
operation was successful.

• protected synchronized boolean assert(Fact fact)

Asserts a Fact object to the Rete engine, returning a boolean indicating whether the
operation was successful.

• protected synchronized boolean assertString(String fact)

Asserts a Fact as a string to the Rete engine, returning a boolean indicating whether the
operation was successful.

• protected synchronized Value engineExecuteCommand(String

content) throws JessException
Executes any JESS command returning a Value object containing the output of the
execution. If something goes wrong while executing the command, this method throws a
JessException. Use this method for running most commands to JESS (excluding adding
templates and facts).

39

FIPA-OS Developers Guide

• protected synchronized Context getGlobalContext()
Returns the Rete engine’s global Context. Global Context is used to determine the type
of the value objects returned by engine execution.

Inner class
JessAgent has one inner class: Package implements the jess.Userpackage interface. This class
loads a number of additional packages to the JESS Engine. Presently all packages are loaded, but the
class allows for the possibility of including methods and constructors for loading combinations of
packages.

FIPA CCL (Choice Constraint Language)
FIPA-CCL is the FIPA approved Content language for communicating Constraint Satisfaction
Problems. CCL is designed as a language to be used for agent communication that directly supports the
expression of choice and choice problems in the content of agent messages.

The code included in FIPA-OS conforms to version 2.0.1 of the Constraint Choice Language (CCL).
This is the version of CCL that has been adopted by FIPA as the standard FIPA compliant content
language named FIPA-CCL. This specification may be downloaded from the CCL Website [7].

Constraint Choice Problems and the field of Constraint Satisfaction Problems involve representing
problems as combinations of allowed values that may be solved to obtain solutions. Typically these
combinations of allowed values will be represented as Constraints saying what values variables may
take simultaneously. A solution is found when all variables can be assigned a value without
contradicting any of the stated Constraints.

Typical problems that may be modelled and solved using Constraint Satisfaction Techniques are
resource allocation problems and tasks involving task scheduling.

Code included
Code is provided in FIPA-OS for supporting a subset of the objects described in the FIPA-CCL
specification. Using this code CSP problems can be proposed and solutions returned.

The following Java objects refer to objects in the FIPA-CCL specification that are supported. These
are:

fipaos.skill.constraint.ccl.constraint.CSPRelation
fipaos.skill.constraint.ccl.object.CSP
fipaos.skill.constraint.ccl.object.CSPSolution
fipaos.skill.constraint.ccl.variable.CSPRange
fipaos.skill.constraint.ccl.variable.CSPValue
fipaos.skill.constraint.ccl.variable.CSPVariable
fipaos.skill.constraint.ccl.variable.CSPVariableAssignment
fipaos.skill.constraint.ccl.variable.IndexPair

All the objects in the FIPA-CCL have code to represent them, however only those described above
have been fully implemented. These objects have methods that allow access to obtain and set their
variables. They also have methods that allow them to be converted to and from Content objects.

The following two classes are used to represent some of the sets of values that may be held in CCL
Messages.

fipaos.skill.constraint.ccl.variable.List
fipaos.skill.constraint.ccl.variable.Tuple

Finally the CCLMessage class allows Constraint problems represented using the above classes to be
converted to and from text messages.

fipaos.skill.constraint.message.CCLMessage

40

FIPA-OS Developers Guide

Future Work
Parser Factory
There is still much research to be done to enable transparent content language translation.

41

FIPA-OS Developers Guide

Bibliography
[1] FIPA Agent Management Specification (XC00023G), August 2000

http://www.fipa.org/specs/fipa00023/XC00023G.doc

[2] FIPA SL Content Language Specification (XC00008F), August 2000
http://www.fipa.org/specs/fipa00008/XC00008F.doc

[3] FIPA ACL Message Structure Specification (XC00061D), August 2000
http://www.fipa.org/specs/fipa00061/XC00061D.doc

[4] FIPA Agent Message Transport Service Specification (XC00067C), July 2000
http://www.fipa.org/specs/fipa00067/XC00067C.doc

[5] FIPA Agent Message Transport Protocol for IIOP Specification (XC00075D), October 2000
http://www.fipa.org/specs/fipa00075/XC00075D.doc

[6] FIPA ACL Message Representation in String Specification (XC00070F), October 2000
http://www.fipa.org/specs/fipa00070/XC00070F.doc

[7] CCL Home Page
http://liawww.epfl.ch/~willmott/CCL/

[8] FIPA-OS Inter-platform Communication Configuration Guide
http://fipa-os.sourceforge.net/docs/Interplatform_Configuration_Guide.pdf

[9] FIPA-OS SourceForge Home Page
http://fipa-os.sourceforge.net/

[10] FIPA-OS SourceForge Development Home Page
http://sourceforge.net/projects/fipa-os/

[11] FIPA Website
http://www.fipa.org/

[12] XML Specifications
http://www.w3.org/XML/

[13] RDF Specifications
http://www.w3.org/RDF/

[14] JESS Home Page

http://herzberg.ca.sandia.gov/jess/

http://www.fipa.org/specs/fipa00023/XC00023G.doc
http://www.fipa.org/specs/fipa00008/XC00008F.doc
http://www.fipa.org/specs/fipa00061/XC00061D.doc
http://www.fipa.org/specs/fipa00067/XC00067C.doc
http://www.fipa.org/specs/fipa00075/XC00075D.doc
http://www.fipa.org/specs/fipa00070/XC00070F.doc
http://liawww.epfl.ch/~willmott/CCL/
http://fipa-os.sourceforge.net/docs/Interplatform_Configuration_Guide.pdf
http://fipa-os.sourceforge.net/
http://sourceforge.net/projects/fipa-os/
http://www.fipa.org/
http://www.w3.org/XML/
http://www.w3.org/RDF/
http://www.w3.org/RDF/

